The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The molecular basis of kidney stones.

PURPOSE OF REVIEW: To emphasize an exploration of mechanisms of kidney stone disease based on a molecular understanding of excess urinary excretions of calcium, oxalate, cystine, and uric acid. RECENT FINDINGS: Hypercalciuria is discussed relative to mutations in the renal chloride genes CLCN5 and CLCNKB, WNK kinases, ATPB61, and NPT2. Hyperoxaluria is discussed relative to mutations in AGXT and GRHPR. Cystinuria is discussed relative to mutations in SLC3A1 and SLC7A9. Hyperuricosuria is discussed with novel gene findings, and hyperxanthinuria with new findings in XDH. SUMMARY: An enhanced understanding of the diagnosis, course, and prognosis for genetic causes of kidney stone diseases has been made available to the clinician caring for patients with kidney stones and to the scientist interested in their cause, as a result of molecular breakthroughs in the kidney handling of normal urinary constituents. We look forward to a new era of the therapeutics of kidney stones based on such advances.[1]


  1. The molecular basis of kidney stones. Langman, C.B. Curr. Opin. Pediatr. (2004) [Pubmed]
WikiGenes - Universities