The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Down-regulation of adipose 11beta-hydroxysteroid dehydrogenase type 1 by high-fat feeding in mice: a potential adaptive mechanism counteracting metabolic disease.

The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) amplifies intracellular glucocorticoid action in vivo. 11beta-HSD-1 activity is increased in adipose tissues of obese humans and genetically obese rodents, providing a mechanistic basis for the similarities between metabolic disease arising from high circulating glucocorticoids (Cushing's syndrome) and idiopathic obesity/metabolic syndrome where plasma glucocorticoids are typically unaltered. Fat-specific overexpression of 11beta-HSD-1 produces a metabolic syndrome in mice, whereas 11beta-HSD-1 null mice resist high-fat diet (HF)-induced visceral obesity and its metabolic consequences. Here we compared the effects of chronic (18 wk) HF feeding on adipose 11beta-HSD-1 activity in strains of mice that are either resistant (A/J) or prone (C57BL/6J) to metabolic disease. 11beta-HSD-1 activity was highest in sc fat, followed by epididymal fat, with lowest activity in the mesenteric visceral depot of both strains. 11beta-HSD-1 activity was lower in white adipose tissues of A/J compared with C57BL/6J mice. Chronic HF feeding unexpectedly caused a down-regulation of 11beta-HSD-1 in adipose tissues of both strains, despite comparable adiposity. However, A/J mice down-regulated adipose 11beta-HSD-1 to a significantly lower level than C57BL/6J mice in white and thermogenic brown adipose tissues. We propose that a lower adipose 11beta-HSD-1 set point affords a metabolic protection to A/J mice. Adaptive down-regulation of adipose 11beta-HSD-1 in response to chronic HF represents a novel mechanism that may counteract metabolic disease.[1]

References

 
WikiGenes - Universities