The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Adip1  -  adiposity 1

Mus musculus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Adip1


Psychiatry related information on Adip1


High impact information on Adip1

  • We show here that targeted activation of PPARdelta in adipose tissue specifically induces expression of genes required for fatty acid oxidation and energy dissipation, which in turn leads to improved lipid profiles and reduced adiposity [8].
  • These observations support the notion that synaptic plasticity of arcuate nucleus feeding circuits is an inherent element in body weight regulation and offer alternative approaches to reducing adiposity under conditions of failed leptin receptor signaling [9].
  • The gonadal steroid estradiol can also reduce appetite and adiposity, and it influences synaptic plasticity [9].
  • Neuronal Ptpn1(-/-) mice have reduced weight and adiposity, and increased activity and energy expenditure [10].
  • Furthermore, an absence of JNK1 results in decreased adiposity, significantly improved insulin sensitivity and enhanced insulin receptor signalling capacity in two different models of mouse obesity [11].

Chemical compound and disease context of Adip1


Biological context of Adip1

  • We map body composition traits, adiposity, and skeletal size, in a replicate F2 intercross of the same two strains containing 510 individuals [1].
  • We have inactivated the Y5R gene in mice and report that younger Y5R-null mice feed and grow normally; however, they develop mild late-onset obesity characterized by increased body weight, food intake and adiposity [17].
  • Type 2 diabetes, characterized by target-tissue resistance to insulin, is epidemic in industrialized societies and is strongly associated with obesity; however, the mechanism by which increased adiposity causes insulin resistance is unclear [18].
  • As leptin levels rise with increasing adiposity in rodents and man, it is proposed to act as a negative feedback 'adipostatic signal' to brain centres controlling energy homeostasis, limiting obesity in times of nutritional abundance [19].
  • Transgenic mice expressing lower levels of the transgene had normal adiposity and survived to adulthood; however, they showed a complete resistance to chemically induced obesity [20].

Anatomical context of Adip1

  • Adrenaline and noradrenaline, the main effectors of the sympathetic nervous system and adrenal medulla, respectively, are thought to control adiposity and energy balance through several mechanisms [21].
  • To investigate the interrelationship between excessive adipose tissue mass and these associated disorders, we have attempted to reduce adiposity via targeted expression of an attenuated diphtheria toxin A chain to adipose tissue, using the 5' regulatory region of the adipocyte P2 (aP2) gene [20].
  • The adipocyte-derived hormone leptin and the pancreatic beta cell-derived hormone insulin each function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity [22].
  • While adult male mice lacking phosphatidylinositol 5-phosphate 4-kinase beta have significantly less body fat than wild-type littermates, female mice lacking phosphatidylinositol 5-phosphate 4-kinase beta have increased insulin sensitivity in the presence of normal adiposity [23].
  • We conclude that, although mGPD is not essential for thyroid thermogenesis, variations in its function affect viability and adiposity in mice [24].

Associations of Adip1 with chemical compounds

  • Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise [25].
  • Since fat oxidation in non-adipose tissue can influence body adiposity, we sought to determine whether d4T, AZT and BAIBA can cause lipoatrophy in mice by this catabolic mechanism [26].
  • The aim of this study was to determine whether the human PPAR gamma proline to alanine substitution polymorphism (Pro12Ala) modifies the association between dietary fat and adiposity and plasma lipids [27].
  • Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity [28].
  • To address this issue, effects of central, chronic treatment with histamine on food intake, adiposity, and energy expenditure were examined using leptin-resistant obese and diabetic mice [29].

Regulatory relationships of Adip1


Other interactions of Adip1


Analytical, diagnostic and therapeutic context of Adip1


  1. Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Cheverud, J.M., Vaughn, T.T., Pletscher, L.S., Peripato, A.C., Adams, E.S., Erikson, C.F., King-Ellison, K.J. Mamm. Genome (2001) [Pubmed]
  2. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Air, E.L., Strowski, M.Z., Benoit, S.C., Conarello, S.L., Salituro, G.M., Guan, X.M., Liu, K., Woods, S.C., Zhang, B.B. Nat. Med. (2002) [Pubmed]
  3. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Hanada, R., Teranishi, H., Pearson, J.T., Kurokawa, M., Hosoda, H., Fukushima, N., Fukue, Y., Serino, R., Fujihara, H., Ueta, Y., Ikawa, M., Okabe, M., Murakami, N., Shirai, M., Yoshimatsu, H., Kangawa, K., Kojima, M. Nat. Med. (2004) [Pubmed]
  4. Absence of ghrelin protects against early-onset obesity. Wortley, K.E., del Rincon, J.P., Murray, J.D., Garcia, K., Iida, K., Thorner, M.O., Sleeman, M.W. J. Clin. Invest. (2005) [Pubmed]
  5. Leptin selectively decreases visceral adiposity and enhances insulin action. Barzilai, N., Wang, J., Massilon, D., Vuguin, P., Hawkins, M., Rossetti, L. J. Clin. Invest. (1997) [Pubmed]
  6. Mice lacking ghrelin receptors resist the development of diet-induced obesity. Zigman, J.M., Nakano, Y., Coppari, R., Balthasar, N., Marcus, J.N., Lee, C.E., Jones, J.E., Deysher, A.E., Waxman, A.R., White, R.D., Williams, T.D., Lachey, J.L., Seeley, R.J., Lowell, B.B., Elmquist, J.K. J. Clin. Invest. (2005) [Pubmed]
  7. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Horvath, T.L., Gao, X.B. Cell metabolism. (2005) [Pubmed]
  8. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Wang, Y.X., Lee, C.H., Tiep, S., Yu, R.T., Ham, J., Kang, H., Evans, R.M. Cell (2003) [Pubmed]
  9. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Gao, Q., Mezei, G., Nie, Y., Rao, Y., Choi, C.S., Bechmann, I., Leranth, C., Toran-Allerand, D., Priest, C.A., Roberts, J.L., Gao, X.B., Mobbs, C., Shulman, G.I., Diano, S., Horvath, T.L. Nat. Med. (2007) [Pubmed]
  10. Neuronal PTP1B regulates body weight, adiposity and leptin action. Bence, K.K., Delibegovic, M., Xue, B., Gorgun, C.Z., Hotamisligil, G.S., Neel, B.G., Kahn, B.B. Nat. Med. (2006) [Pubmed]
  11. A central role for JNK in obesity and insulin resistance. Hirosumi, J., Tuncman, G., Chang, L., Görgün, C.Z., Uysal, K.T., Maeda, K., Karin, M., Hotamisligil, G.S. Nature (2002) [Pubmed]
  12. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. Jiang, G., Li, Z., Liu, F., Ellsworth, K., Dallas-Yang, Q., Wu, M., Ronan, J., Esau, C., Murphy, C., Szalkowski, D., Bergeron, R., Doebber, T., Zhang, B.B. J. Clin. Invest. (2005) [Pubmed]
  13. Adipocyte-selective reduction of the leptin receptors induced by antisense RNA leads to increased adiposity, dyslipidemia, and insulin resistance. Huan, J.N., Li, J., Han, Y., Chen, K., Wu, N., Zhao, A.Z. J. Biol. Chem. (2003) [Pubmed]
  14. A novel missense substitution (Val1483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic Pima Indians. Kovacs, P., Harper, I., Hanson, R.L., Infante, A.M., Bogardus, C., Tataranni, P.A., Baier, L.J. Diabetes (2004) [Pubmed]
  15. Role of calcium and dairy products in energy partitioning and weight management. Zemel, M.B. Am. J. Clin. Nutr. (2004) [Pubmed]
  16. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Wang, Y., Lam, K.S., Kraegen, E.W., Sweeney, G., Zhang, J., Tso, A.W., Chow, W.S., Wat, N.M., Xu, J.Y., Hoo, R.L., Xu, A. Clin. Chem. (2007) [Pubmed]
  17. Role of the Y5 neuropeptide Y receptor in feeding and obesity. Marsh, D.J., Hollopeter, G., Kafer, K.E., Palmiter, R.D. Nat. Med. (1998) [Pubmed]
  18. The hormone resistin links obesity to diabetes. Steppan, C.M., Bailey, S.T., Bhat, S., Brown, E.J., Banerjee, R.R., Wright, C.M., Patel, H.R., Ahima, R.S., Lazar, M.A. Nature (2001) [Pubmed]
  19. Role of leptin in the neuroendocrine response to fasting. Ahima, R.S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., Flier, J.S. Nature (1996) [Pubmed]
  20. Targeted expression of a toxin gene to adipose tissue: transgenic mice resistant to obesity. Ross, S.R., Graves, R.A., Spiegelman, B.M. Genes Dev. (1993) [Pubmed]
  21. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Thomas, S.A., Palmiter, R.D. Nature (1997) [Pubmed]
  22. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Niswender, K.D., Schwartz, M.W. Frontiers in neuroendocrinology. (2003) [Pubmed]
  23. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase beta-/- mice. Lamia, K.A., Peroni, O.D., Kim, Y.B., Rameh, L.E., Kahn, B.B., Cantley, L.C. Mol. Cell. Biol. (2004) [Pubmed]
  24. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. Brown, L.J., Koza, R.A., Everett, C., Reitman, M.L., Marshall, L., Fahien, L.A., Kozak, L.P., MacDonald, M.J. J. Biol. Chem. (2002) [Pubmed]
  25. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Li, B., Nolte, L.A., Ju, J.S., Han, D.H., Coleman, T., Holloszy, J.O., Semenkovich, C.F. Nat. Med. (2000) [Pubmed]
  26. Effects of zidovudine, stavudine and beta-aminoisobutyric acid on lipid homeostasis in mice: possible role in human fat wasting. Maisonneuve, C., Igoudjil, A., Begriche, K., Lettéron, P., Guimont, M.C., Bastin, J., Laigneau, J.P., Pessayre, D., Fromenty, B. Antivir. Ther. (Lond.) (2004) [Pubmed]
  27. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Memisoglu, A., Hu, F.B., Hankinson, S.E., Manson, J.E., De Vivo, I., Willett, W.C., Hunter, D.J. Hum. Mol. Genet. (2003) [Pubmed]
  28. Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1. Chen, H.C., Rao, M., Sajan, M.P., Standaert, M., Kanoh, Y., Miura, A., Farese, R.V., Farese, R.V. Diabetes (2004) [Pubmed]
  29. Central infusion of histamine reduces fat accumulation and upregulates UCP family in leptin-resistant obese mice. Masaki, T., Yoshimatsu, H., Chiba, S., Watanabe, T., Sakata, T. Diabetes (2001) [Pubmed]
  30. A neuropeptide Y Y5 antagonist selectively ameliorates body weight gain and associated parameters in diet-induced obese mice. Ishihara, A., Kanatani, A., Mashiko, S., Tanaka, T., Hidaka, M., Gomori, A., Iwaasa, H., Murai, N., Egashira, S., Murai, T., Mitobe, Y., Matsushita, H., Okamoto, O., Sato, N., Jitsuoka, M., Fukuroda, T., Ohe, T., Guan, X., Macneil, D.J., Van der Ploeg, L.H., Nishikibe, M., Ishii, Y., Ihara, M., Fukami, T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  31. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Kouyama, R., Suganami, T., Nishida, J., Tanaka, M., Toyoda, T., Kiso, M., Chiwata, T., Miyamoto, Y., Yoshimasa, Y., Fukamizu, A., Horiuchi, M., Hirata, Y., Ogawa, Y. Endocrinology (2005) [Pubmed]
  32. Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Sainsbury, A., Baldock, P.A., Schwarzer, C., Ueno, N., Enriquez, R.F., Couzens, M., Inui, A., Herzog, H., Gardiner, E.M. Mol. Cell. Biol. (2003) [Pubmed]
  33. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. Le Bacquer, O., Petroulakis, E., Paglialunga, S., Poulin, F., Richard, D., Cianflone, K., Sonenberg, N. J. Clin. Invest. (2007) [Pubmed]
  34. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. Weisberg, S.P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R.L., Ferrante, A.W. J. Clin. Invest. (2006) [Pubmed]
  35. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Gelling, R.W., Du, X.Q., Dichmann, D.S., Romer, J., Huang, H., Cui, L., Obici, S., Tang, B., Holst, J.J., Fledelius, C., Johansen, P.B., Rossetti, L., Jelicks, L.A., Serup, P., Nishimura, E., Charron, M.J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  36. Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1. Chen, H.C., Jensen, D.R., Myers, H.M., Eckel, R.H., Farese, R.V. J. Clin. Invest. (2003) [Pubmed]
  37. Susceptibility to Induced and Spontaneous Carcinogenesis Is Increased in Fatless A-ZIP/F-1 but not in Obese ob/ob Mice. Ablamunits, V., Cohen, Y., Brazee, I.B., Gaetz, H.P., Vinson, C., Klebanov, S. Cancer Res. (2006) [Pubmed]
  38. Regulation of adiposity by dietary calcium. Zemel, M.B., Shi, H., Greer, B., Dirienzo, D., Zemel, P.C. FASEB J. (2000) [Pubmed]
  39. Nutritional Supplementation With trans-10, cis-12-Conjugated Linoleic Acid Induces Inflammation of White Adipose Tissue. Poirier, H., Shapiro, J.S., Kim, R.J., Lazar, M.A. Diabetes (2006) [Pubmed]
WikiGenes - Universities