The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway.

The effect of a noncanonical Wnt, Wnt11, on canonical Wnt signaling stimulated by Wnt1 and activated forms of LRP5 (low density lipoprotein receptor-related protein-5), Dishevelled1 (Dvl1), and beta-catenin was examined in NIH3T3 cells and P19 embryonic carcinoma cells. Wnt11 repressed Wnt1- mediated activation of LEF-1 reporter activity in both cell lines. However, Wnt11 was unable to inhibit canonical signaling activated by LRP5, Dvl1, or beta-catenin in NIH3T3 cells, although it could in P19 cells. In addition, Wnt11-mediated inhibition of canonical signaling in NIH3T3 cells is ligand-specific; Wnt11 could effectively repress canonical signaling activated by Wnt1, Wnt3, or Wnt3a but not by Wnt7a or Wnt7b. Co-culture experiments with NIH3T3 cells showed that the co-expression of Wnt11 with Wnt1 was not an essential requirement for the inhibition, suggesting receptor competition as a possible mechanism. Moreover, in both cell types, elevation of intracellular Ca(2+) levels, which can result from Wnt11 treatment, led to the inhibition of canonical signaling. This result suggests that Wnt11 might not be able to signal in NIH3T3. Furthermore, P19 cells were found to express both endogenous canonical Wnts and Wnt11. Knockdown of Wnt11 expression using siRNA resulted in increased LEF-1 reporter activity, thus indicating that Wnt11-mediated suppression of canonical signaling exists in vivo.[1]


  1. Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway. Maye, P., Zheng, J., Li, L., Wu, D. J. Biol. Chem. (2004) [Pubmed]
WikiGenes - Universities