The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites.

Circadian rhythms in mammals depend on the properties of cells in the suprachiasmatic nucleus (SCN). The retino-recipient core of the mouse SCN is characterized by vasoactive intestinal peptide (VIP) neurons. Expression within the SCN of VPAC2, a VIP receptor, is required for circadian rhythmicity. Using transgenic mice with beta-galactosidase as a marker for VPAC2, we have phenotyped VPAC2- expressing cells within the SCN and investigated expression of the VPAC2 marker at sites previously shown to receive VIP-containing SCN efferents. In situ hybridization and immunohistochemistry demonstrated identical distributions for VPAC2 mRNA and beta-galactosidase and coexpression of the two signals in the SCN. Double-label confocal immunofluorescence identified beta-galactosidase in 32% of the VIP and 31% of the calretinin neurons in the SCN core. Of the arginine-vasopressin neurons that characterize the SCN shell, 45% expressed beta-galactosidase. In contrast, this marker was not apparent in astrocytes within the SCN core or shell. Cell bodies containing beta-galactosidase were detected at sites reportedly receiving VIP-containing SCN efferents, including the subparaventricular zone and lateral septum and the anteroventral periventricular, preoptic suprachiasmatic, medial preoptic and paraventricular hypothalamic nuclei. The detection of a marker for VPAC2 expression in the SCN in almost one-third of the VIP and calretinin core neurons and nearly half of the arginine-vasopressin shell neurons and also in cell bodies at sites receiving VIP-immunoreactive projections from the SCN indicates that VPAC2 may contribute to autoregulation and/or coupling within the SCN core and to the control of the SCN shell and sites distal to this nucleus.[1]

References

  1. Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Kalló, I., Kalamatianos, T., Wiltshire, N., Shen, S., Sheward, W.J., Harmar, A.J., Coen, C.W. Eur. J. Neurosci. (2004) [Pubmed]
 
WikiGenes - Universities