Yeast ARL1 encodes a regulator of K+ influx.
A molecular genetic approach was undertaken in Saccharomyces cerevisiae to examine the functions of ARL1, encoding a G protein of the Ras superfamily. We show here that ARL1 is an important component of the control of intracellular K(+). The arl1 mutant was sensitive to toxic cations, including hygromycin B and other aminoglycoside antibiotics, tetramethylammonium ions, methylammonium ions and protons. The hygromycin-B-sensitive phenotype was suppressed by the inclusion of K(+) and complemented by wild-type ARL1 and an allele of ARL1 predicted to be unbound to nucleotide in vivo. The arl1 mutant strain internalized approximately 25% more [(14)C]-methylammonium ion than did the wild type, consistent with hyperpolarization of the plasma membrane. The arl1 strain took up 30-40% less (86)Rb(+) than did the wild type, showing an inability to regulate K(+) import properly, contributing to membrane hyperpolarity. By contrast, K(+) and H(+) efflux were undisturbed. The loss of ARL1 had no effect on the steady-state level or the localization of a tagged version of Trk1p. High copy suppressors of the hygromycin-B phenotype included SAP155, encoding a protein that interacts with the cell cycle regulator Sit4p, and HAL4 and HAL5, encoding Ser/Thr kinases that regulate the K(+)-influx mediators Trk1p and Trk2p. These results are consistent with a model in which ARL1, via regulation of HAL4/HAL5, governs K(+) homeostasis in cells.[1]References
- Yeast ARL1 encodes a regulator of K+ influx. Munson, A.M., Haydon, D.H., Love, S.L., Fell, G.L., Palanivel, V.R., Rosenwald, A.G. J. Cell. Sci. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg