The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Complementary expression patterns of retinoid acid-synthesizing and -metabolizing enzymes in pre-natal mouse inner ear structures.

Retinoic acid (RA) plays a pivotal role in patterning and differentiation of the embryonic inner ear. Despite its documented effects during embryonic development, the cellular sites that synthesize or metabolize RA in the inner ear have yet to be determined. Here we describe the distribution of three synthesizing enzymes, retinaldehyde dehydrogenases 1, 2 and 3 (RALDH1, RALDH2 and RALDH3) and two catabolizing enzymes (CYP26A1 and CYP26B1) in the mouse inner ear at embryonic day 18.5 when active cell differentiation is underway. Two detection methods, radioactive and non-radioactive in situ hybridization, were employed to elucidate the tissue distribution and cellular localization of these enzymes, respectively. All of the five enzymes examined, with the exception of CYP26A1, were expressed in both vestibular and cochlear end organs. While expression of the three RALDHs was observed in various cell types, CYP26B1 expression was found only in supporting cells of the vestibular and cochlear end organs. In the cochlea, expression domains of RALDH1-3 and CYP26B1 were complementary to one another. These results reveal specific tissue- and cellular expression patterns of RA synthesizing and catabolizing enzymes in the pre-natal inner ear, and suggest that a precise control of RA concentrations in various cell types of the inner ear is achieved by the balance between RALDHs and CYP26B1 activities.[1]


  1. Complementary expression patterns of retinoid acid-synthesizing and -metabolizing enzymes in pre-natal mouse inner ear structures. Romand, R., Niederreither, K., Abu-Abed, S., Petkovich, M., Fraulob, V., Hashino, E., Dollé, P. Gene Expr. Patterns (2004) [Pubmed]
WikiGenes - Universities