The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits.

Inhibition of myosin phosphatase is critical for agonist-induced contractility of vascular smooth muscle. The protein CPI-17 is a phosphorylation-dependent inhibitor of myosin phosphatase and, in response to agonists, Thr-38 is phosphorylated by protein kinase C, producing a >1,000-fold increase in inhibitory potency. Here, we addressed how CPI-17 could selectively inhibit myosin phosphatase among other protein phosphatase-1 (PP1) holoenzymes. PP1 in cell lysates was separated by sequential affinity chromatography into at least two fractions, one bound specifically to thiophospho-CPI-17, and another bound specifically to inhibitor-2. The MYPT1 regulatory subunit of myosin phosphatase was concentrated only in the fraction bound to thiophospho-CPI-17. This binding was eliminated by addition of excess microcystin-LR to the lysate, showing that binding at the active site of PP1 is required. Phospho- CPI-17 failed to inhibit glycogen- bound PP1 from skeletal muscle, composed primarily of PP1 with the striated muscle glycogen-targeting subunit (G(M)) regulatory subunit. Phospho- CPI-17 was dephosphorylated during assay of glycogen- bound PP1, not MYPT1- associated PP1, even though these two holoenzymes have the same PP1 catalytic subunit. Phosphorylation of CPI-17 in rabbit arteries was enhanced by calyculin A but not okadaic acid or fostriecin, consistent with PP1-mediated dephosphorylation. We propose that CPI-17 binds at the PP1 active site where it is dephosphorylated, but association of MYPT1 with PP1C allosterically retards this hydrolysis, resulting in formation of a complex of MYPT1.PP1C.P-CPI-17, leading to an increase in smooth muscle contraction.[1]

References

 
WikiGenes - Universities