The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

C05371     (5R,8S,11R,12S,15S,18R,19S,22R )-15-[3...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of C05371

  • In the present study we characterize the inhibitory effects of microcystin-LR, a hepatotoxic cyclic peptide associated with most strains of the blue-green algae Microcystis aeruginosa found in the Northern hemisphere, that proves to be a potent inhibitor of type 1 (IC50 = 1.7 nM) and type 2A (IC50 = 0.04 nM) protein phosphatases [1].
  • The predominant cyanotoxin, microcystin-LR (MCLR), targets the liver and its toxicity depends on the uptake and removal rates in the liver [2].
  • This work describes a two-step conjugate synthesis of a new fluorescent analog of microcystin-LR and its subsequent utilization for the development of an optical biosensor for cyanobacteria toxins [3].
  • Rapid isolation of a single-chain antibody against the cyanobacterial toxin microcystin-LR by phage display and its use in the immunoaffinity concentration of microcystins from water [4].
  • An isolated bacterium, identified as a new Sphingomonas species, was demonstrated to contain a novel enzymatic pathway which acted on microcystin LR, the most common cyanobacterial cyclic peptide toxin [5].

Psychiatry related information on C05371

  • It was observed that at low concentrations of hydrogen peroxide (0.25-0.5 mM), the extent of microcystin-LR degradation was low, even after prolonged reaction time (up to 600 min) [6].

High impact information on C05371


Chemical compound and disease context of C05371

  • Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins [12].
  • Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (10% O(2)) for 48 h than in rings from normoxic animals [13].
  • Cultured cells of Anabaena flos-aquae strain CYA 83/1, isolated from Lake Edlandsvatn, Norway, produced two microcystin mono-methyl ester derivatives (1 and 2) at the D-Glu unit in addition to microcystin-LR (3), [D-Asp3]microcystin-LR (4), microcystin-RR (5), and [D-Asp3]microcystin-RR (6) [14].
  • These four types of compounds are okadaic acid, calyculin A, microcystin-LR, and tautomycin, which are isolated from different natural sources, a black sponge Halichondria okadai, a marine sponge Discodermia calyx, a blue-green alga Microcystis aeruginosa, and Streptomyces spirover ticillatus, respectively [15].
  • Six monoclonal antibodies (MAbs) to microcystin-LR (MCLR), a cyclic heptapeptide hepatotoxin isolated from the cyanobacterium Microcystis aeruginosa, were produced [16].

Biological context of C05371


Anatomical context of C05371


Associations of C05371 with other chemical compounds


Gene context of C05371


Analytical, diagnostic and therapeutic context of C05371


  1. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Honkanen, R.E., Zwiller, J., Moore, R.E., Daily, S.L., Khatra, B.S., Dukelow, M., Boynton, A.L. J. Biol. Chem. (1990) [Pubmed]
  2. An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. Gehringer, M.M., Shephard, E.G., Downing, T.G., Wiegand, C., Neilan, B.A. Int. J. Biochem. Cell Biol. (2004) [Pubmed]
  3. Novel fluorescent biosensor for pathogenic toxins using cyclic polypeptide conjugates. Sadik, O.A., Yan, F. Chem. Commun. (Camb.) (2004) [Pubmed]
  4. Rapid isolation of a single-chain antibody against the cyanobacterial toxin microcystin-LR by phage display and its use in the immunoaffinity concentration of microcystins from water. McElhiney, J., Drever, M., Lawton, L.A., Porter, A.J. Appl. Environ. Microbiol. (2002) [Pubmed]
  5. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Bourne, D.G., Jones, G.J., Blakeley, R.L., Jones, A., Negri, A.P., Riddles, P. Appl. Environ. Microbiol. (1996) [Pubmed]
  6. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Bandala, E.R., Martínez, D., Martínez, E., Dionysiou, D.D. Toxicon (2004) [Pubmed]
  7. An essential role for protein phosphatases in hippocampal long-term depression. Mulkey, R.M., Herron, C.E., Malenka, R.C. Science (1993) [Pubmed]
  8. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. Conradt, B., Shaw, J., Vida, T., Emr, S., Wickner, W. J. Cell Biol. (1992) [Pubmed]
  9. Cell-free fusion of endocytic vesicles is regulated by phosphorylation. Woodman, P.G., Mundy, D.I., Cohen, P., Warren, G. J. Cell Biol. (1992) [Pubmed]
  10. Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Eto, M., Kitazawa, T., Brautigan, D.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  11. CaM-kinaseII-dependent commitment to microcystin-induced apoptosis is coupled to cell budding, but not to shrinkage or chromatin hypercondensation. Krakstad, C., Herfindal, L., Gjertsen, B.T., Bøe, R., Vintermyr, O.K., Fladmark, K.E., Døskeland, S.O. Cell Death Differ. (2006) [Pubmed]
  12. Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Namikoshi, M., Choi, B.W., Sun, F., Rinehart, K.L., Evans, W.R., Carmichael, W.W. Chem. Res. Toxicol. (1993) [Pubmed]
  13. Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia. Teoh, H., Zacour, M., Wener, A.D., Gunaratnam, L., Ward, M.E. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  14. Two methyl ester derivatives of microcystins, cyclic heptapeptide hepatotoxins, isolated from Anabaena flos-aquae strain CYA 83/1. Sivonen, K., Skulberg, O.M., Namikoshi, M., Evans, W.R., Carmichael, W.W., Rinehart, K.L. Toxicon (1992) [Pubmed]
  15. Structurally different members of the okadaic acid class selectively inhibit protein serine/threonine but not tyrosine phosphatase activity. Suganuma, M., Fujiki, H., Okabe, S., Nishiwaki, S., Brautigan, D., Ingebritsen, T.S., Rosner, M.R. Toxicon (1992) [Pubmed]
  16. Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. Nagata, S., Soutome, H., Tsutsumi, T., Hasegawa, A., Sekijima, M., Sugamata, M., Harada, K., Suganuma, M., Ueno, Y. Nat. Toxins (1995) [Pubmed]
  17. Crystal structure and mutagenesis of a protein phosphatase-1:calcineurin hybrid elucidate the role of the beta12-beta13 loop in inhibitor binding. Maynes, J.T., Perreault, K.R., Cherney, M.M., Luu, H.A., James, M.N., Holmes, C.F. J. Biol. Chem. (2004) [Pubmed]
  18. Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. Robinson, N.A., Pace, J.G., Matson, C.F., Miura, G.A., Lawrence, W.B. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  19. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. Gehringer, M.M. FEBS Lett. (2004) [Pubmed]
  20. Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Zegura, B., Lah, T.T., Filipic, M. Mutat. Res. (2006) [Pubmed]
  21. Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: reaction kinetics, characterization, and toxicity of reaction products. Kull, T.P., Backlund, P.H., Karlsson, K.M., Meriluoto, J.A. Environ. Sci. Technol. (2004) [Pubmed]
  22. Prevention of toxin-induced cytoskeletal disruption and apoptotic liver cell death by the grapefruit flavonoid, naringin. Blankson, H., Grotterød, E.M., Seglen, P.O. Cell Death Differ. (2000) [Pubmed]
  23. Neurofilament-L is a protein phosphatase-1-binding protein associated with neuronal plasma membrane and post-synaptic density. Terry-Lorenzo, R.T., Inoue, M., Connor, J.H., Haystead, T.A., Armbruster, B.N., Gupta, R.P., Oliver, C.J., Shenolikar, S. J. Biol. Chem. (2000) [Pubmed]
  24. An elevation of cytosolic protein phosphorylation modulates trimeric G-protein regulation of secretory vesicle formation from the trans-Golgi network. Ohashi, M., Huttner, W.B. J. Biol. Chem. (1994) [Pubmed]
  25. Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. Toivola, D.M., Goldman, R.D., Garrod, D.R., Eriksson, J.E. J. Cell. Sci. (1997) [Pubmed]
  26. Rapid microfilament reorganization induced in isolated rat hepatocytes by microcystin-LR, a cyclic peptide toxin. Eriksson, J.E., Paatero, G.I., Meriluoto, J.A., Codd, G.A., Kass, G.E., Nicotera, P., Orrenius, S. Exp. Cell Res. (1989) [Pubmed]
  27. Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Fladmark, K.E., Brustugun, O.T., Hovland, R., Boe, R., Gjertsen, B.T., Zhivotovsky, B., Døskeland, S.O. Cell Death Differ. (1999) [Pubmed]
  28. Importance of the beta12-beta13 loop in protein phosphatase-1 catalytic subunit for inhibition by toxins and mammalian protein inhibitors. Connor, J.H., Kleeman, T., Barik, S., Honkanen, R.E., Shenolikar, S. J. Biol. Chem. (1999) [Pubmed]
  29. Actions downstream of cyclic GMP/protein kinase G can reverse protein kinase C-mediated phosphorylation of CPI-17 and Ca(2+) sensitization in smooth muscle. Bonnevier, J., Arner, A. J. Biol. Chem. (2004) [Pubmed]
  30. Inhibitor-1 interaction domain that mediates the inhibition of protein phosphatase-1. Connor, J.H., Quan, H.N., Ramaswamy, N.T., Zhang, L., Barik, S., Zheng, J., Cannon, J.F., Lee, E.Y., Shenolikar, S. J. Biol. Chem. (1998) [Pubmed]
  31. Bimodal activation of acetyl-CoA carboxylase by glutamate. Boone, A.N., Chan, A., Kulpa, J.E., Brownsey, R.W. J. Biol. Chem. (2000) [Pubmed]
  32. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Fischer, W.J., Altheimer, S., Cattori, V., Meier, P.J., Dietrich, D.R., Hagenbuch, B. Toxicol. Appl. Pharmacol. (2005) [Pubmed]
  33. Effects of microcystin-LR on patterns of iNOS and cytokine mRNA expression in macrophages in vitro. Chen, T., Shen, P., Zhang, J., Hua, Z. Environ. Toxicol. (2005) [Pubmed]
  34. Neurabins recruit protein phosphatase-1 and inhibitor-2 to the actin cytoskeleton. Terry-Lorenzo, R.T., Elliot, E., Weiser, D.C., Prickett, T.D., Brautigan, D.L., Shenolikar, S. J. Biol. Chem. (2002) [Pubmed]
  35. Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A. Guo, H., Damuni, Z. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  36. Multidimensional biochemical detection of microcystins in liquid chromatography. Zeck, A., Weller, M.G., Niessner, R. Anal. Chem. (2001) [Pubmed]
  37. Analysis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Vasas, G., Gáspár, A., Páger, C., Surányi, G., Máthé, C., Hamvas, M.M., Borbely, G. Electrophoresis (2004) [Pubmed]
WikiGenes - Universities