The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Flavonoids from Radix Scutellariae as potential stroke therapeutic agents by targeting the second postsynaptic density 95 (PSD-95)/disc large/zonula occludens-1 (PDZ) domain of PSD-95.

Excessive activation of N-methyl-D-aspartate receptors (NMDARs) and subsequent production of nitric oxide by neuronal nitric oxide synthase (nNOS) contribute to neuronal damage resulting from hypoxic and ischemic insults. NMDARs and nNOS are coupled together at the postsynaptic membrane through their interaction with postsynaptic density protein (PSD) 95 via PSD-95/disc large/zonula occludens-1 (PDZ) domains. We used NMR (nuclear magnetic resonance) spectroscopy to screen medicinal herbs used in traditional Chinese medicine (TCM) stroke therapy for compounds binding to the second PDZ domain (PDZ2) of PSD-95, the domain linking nNOS and PSD-95. Aqueous extract of Huangqin, the root of Scutellaria baicalensis Georgi (Labiatae), showed significant binding to PDZ2 of PSD-95. The binding site of the active components in the extract overlapped with the nNOS/NR2B- binding pocket of PDZ2 of PSD-95. Four flavones, baicalin, norwogonoside, oroxylin A-glucuronide (oroxyloside), and wogonoside were isolated and found to account for the PDZ-binding activity of the extract. NMR titration experiments showed that baicalin and norwogonoside displayed the highest PDZ2 binding affinity, while oroxylin A-glucuronide and wogonoside showed 4-5 fold less potency in binding to the PDZ domain. Identification of the PDZ binding activity of these compounds will allow investigating whether or not it contributes to the observed clinical effects of Radix Scutellariae. Furthermore, these molecules might provide leads for the development of drugs targeting the signaling pathways mediated by PDZ domains.[1]

References

 
WikiGenes - Universities