Steroid 5alpha-reductase 1 promotes 5alpha-androstane-3alpha,17beta-diol synthesis in immature mouse testes by two pathways.
5alpha-Androstane-3alpha,17beta-diol (androstanediol) is the predominant androgen in immature mouse testes, and studies were designed to investigate its pathway of synthesis, the steroid 5alpha-reductase isoenzyme involved in its formation, and whether testicular androstanediol is formed in embryonic mouse testes at the time of male phenotypic development. In 24-26-day-old immature testes, androstanediol is formed by two pathways; the predominant one involves testosterone --> dihydrotestosterone --> androstanediol, and a second utilizes the pathway progesterone --> 5alpha-dihydroprogesterone --> 5alpha-pregnane-3alpha-ol-20-one --> 5alpha-pregnane-3alpha,17alpha-diol-20-one --> androsterone --> androstanediol. Formation of androstanediol was normal in testes from mice deficient in steroid 5alpha-reductase 2 but absent in testes from mice deficient in steroid 5alpha-reductase 1, indicating that isoenzyme 2 is not expressed in day 24-26 testes. The fact that androstenedione and testosterone were the only androgens identified after incubation of day 16 and 17 embryonic testes with [3H]progesterone implies that androstanediol formation in the testis plays no role in male phenotypic differentiation in the mouse.[1]References
- Steroid 5alpha-reductase 1 promotes 5alpha-androstane-3alpha,17beta-diol synthesis in immature mouse testes by two pathways. Mahendroo, M., Wilson, J.D., Richardson, J.A., Auchus, R.J. Mol. Cell. Endocrinol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg