The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of bis-electrophiles to mutagenic conjugates by human O6-alkylguanine-DNA alkyltransferase.

O(6)-Alkylguanine DNA-alkyl transferase ( AGT) has been shown to conjugate both 1,2-dibromoethane and dibromomethane, yielding AGT inactivation, DNA-AGT cross-linking, and enhanced mutagenicity. A variety of related chemicals were examined to determine if similar phenomena occur. Among the compounds examined in these systems (histidine operon reversion in Escherichia coli and Salmonella typhimurium tester strains), a strong halide order was generally observed, with increasing activities in the order I > Br >> Cl. At least one Br atom appeared to be required for human AGT-dependent mutations, and compounds with only Cl did not inhibit AGT and were not activated to genotoxins. Of a series of haloforms tested (CHX(3), X = Br or Cl), all were without effect. Among a series of alpha,omega-disubstituted dihaloalkanes (Br or I), the inactivation of AGT increased with methylene chain length (at least up to n = 5) but the most mutagenic activity ( AGT-dependent) was seen with n = 1-3. The effects with n = 1 or 2 were expected from previous results; the mutagenic effect with n = 3 and the reduction with n > 3 may represent a balance between AGT reaction, stability, and reactivity, in the absence of anchimeric assistance. A strong AGT-dependent mutation was observed for 1,3-butadiene diepoxide. We conclude that numerous bis-electrophiles show AGT-dependent activation to mutagenic conjugates. Haloforms and dichloroalkanes are therefore not an issue, but bromohaloalkanes and 1,3-butadiene diepoxide are potential problems. These observations are of relevance in considering toxicity and risks of some chemicals used in industrial applications.[1]


  1. Activation of bis-electrophiles to mutagenic conjugates by human O6-alkylguanine-DNA alkyltransferase. Valadez, J.G., Liu, L., Loktionova, N.A., Pegg, A.E., Guengerich, F.P. Chem. Res. Toxicol. (2004) [Pubmed]
WikiGenes - Universities