The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The trefoil protein TFF1 is bound to MUC5AC in human gastric mucosa.

The trefoil protein TFF1 is expressed principally in the superficial cells of the gastric mucosa. It is a small protein and forms homo- and hetero-dimers via a disulphide bond through Cys58 which is located three amino acids from the C terminus. TFF1 is co-expressed with the secreted mucin MUC5AC in superficial cells of the gastric mucosa suggesting that it could be involved in the packaging or function of gastric mucus. We have previously shown that TFF1 co-sediments with mucin glycoproteins on caesium chloride gradients. To extend this observation we have now used gel filtration under physiological conditions, immunoprecipitation and Western transfer analysis to characterise the interaction of TFF1 with gastric mucin glycoproteins. We show that TFF1 co-elutes with MUC5AC but not MUC6 on gel filtration and that immunoprecipitation and Western transfer analysis confirms that TFF1 interacts with MUC5AC. We also demonstrate that the TFF1 dimer is the predominant molecular form bound to MUC5AC. Salt and chelators of divalent cations such as EDTA and EGTA disrupted the TFF1- MUC5AC interaction and increased the degradation of MUC5AC, whereas calcium increased the amount of TFF1 bound to MUC5AC. These data support the contention that TFF1 is pivotal in the packaging and function of human gastric mucosa.[1]

References

  1. The trefoil protein TFF1 is bound to MUC5AC in human gastric mucosa. Ruchaud-Sparagano, M.H., Westley, B.R., May, F.E. Cell. Mol. Life Sci. (2004) [Pubmed]
 
WikiGenes - Universities