The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Accumulation of beta- and gamma-synucleins in the ubiquitin carboxyl-terminal hydrolase L1-deficient gad mouse.

The synuclein family includes three isoforms, termed alpha, beta and gamma. alpha-Synuclein accumulates in various pathological lesions resulting from neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy. However, neither beta- nor gamma-synuclein has been detected in Lewy bodies, and thus it is unclear whether these isoforms contribute to neurological pathology. In the present study, we used immunohistochemistry to demonstrate accelerated accumulation of beta- and gamma-synucleins in axonal spheroids in gracile axonal dystrophy (gad) mice, which do not express ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). gamma-Synuclein immunoreactivity in the spheroids appeared in the gracile nucleus at 3 weeks of age and was maintained until 32 weeks. beta-Synuclein immunoreactivity appeared in spheroids around 12 weeks of age. In contrast, alpha-synuclein immunoreactivity was barely detectable in spheroids. Immunoreactivity for synaptophysin and ubiquitin were either faint or undetectable in spheroids. Given that UCH-L1 deficiency results in axonal degeneration and spheroid formation, our findings suggest that beta- and gamma-synuclein participate in the pathogenesis of axonal swelling in gad mice.[1]

References

  1. Accumulation of beta- and gamma-synucleins in the ubiquitin carboxyl-terminal hydrolase L1-deficient gad mouse. Wang, Y.L., Takeda, A., Osaka, H., Hara, Y., Furuta, A., Setsuie, R., Sun, Y.J., Kwon, J., Sato, Y., Sakurai, M., Noda, M., Yoshikawa, Y., Wada, K. Brain Res. (2004) [Pubmed]
 
WikiGenes - Universities