Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo.
The immune system detects viral infections and mutations in parenchymal cells when antigens from these cells are crosspresented on MHC class I molecules of professional antigen-presenting cells (APC). Exogenous antigens are crosspresented through TAP-dependent (cytosolic) or poorly understood TAP-independent (vacuolar) pathways. The TAP-independent pathway is blocked by the cysteine protease inhibitor, leupeptin, but not by proteasome inhibitors, which is opposite to the effects of these agents on the TAP-dependent pathway. Dendritic cells lacking the cysteine protease cathepsin S lack the TAP-independent pathway. Mice whose APC lack cathepsin S have reduced crosspriming to particulate and cell-associated antigens, as well as to influenza virus. Cathepsin S-deficient phagosomes generate a class I-presented peptide poorly. In contrast, cathepsin S-sufficient phagosomes and recombinant cathepsin S produce the mature epitope. Therefore, cathepsin S plays a major role in generating presented peptides for the vacuolar pathway of crosspresentation, and this mechanism is active in vivo.[1]References
- Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Shen, L., Sigal, L.J., Boes, M., Rock, K.L. Immunity (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg