The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress.

BACKGROUND: High glucose and mechanical strain resulting from capillary hypertension are relevant risk factors affecting glomerular cells in diabetes. Altered activity of the natriuretic peptide (NP) system acting via vasorelaxing cyclic guanosine 5' monophosphate (cGMP) has been proposed to be one of the reasons for diabetes-dependent impairment of kidney function. Podocytes possess the NP receptors (NPRs) coupled to particular guanylyl cyclase. We investigated whether mechanical stress and high ambient glucose influence cGMP generation in podocytes stimulated with NPs. Additionally, the C-type natriuretic peptide (CNP) system has been characterized in these cells. METHODS: Conditionally immortalized mouse podocytes were stimulated with NP for 15 minutes and cGMP was determined by enzymatic immunoassay. The mRNA expression for CNP and CNP-specific NPR-B was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, cGMP synthesis was measured in cells exposed to mechanical stress and to 30 mmol/L glucose for 3 days. RESULTS: Production of cGMP upon stimulation of the NPR-B receptor with CNP and inhibition by an antagonist HS-142-1 was dose-dependent. RT-PCR showed that podocytes express mRNA not only for NPR-B but also for CNP. Mechanical stress reduced the cGMP response by 50%, both to atrial natriuretic peptide (ANP) and to CNP. Conversely, upon high glucose, the CNP-induced production of cGMP was elevated twofold in stretched and in control cells. Furthermore, as compared to ANP, stimulation with CNP caused a larger increase in cGMP levels in stretched as well as in nonstretched cells. CONCLUSION: Expression of CNP together with potent NPR-B receptors suggests that in podocytes, CNP may act in an autocrine and/or paracrine manner. Furthermore, in a diabetic kidney, high glucose and mechanical stress may modulate the CNP-dependent cGMP production in podocytes in an opposite manner.[1]

References

  1. C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress. Lewko, B., Endlich, N., Kriz, W., Stepinski, J., Endlich, K. Kidney Int. (2004) [Pubmed]
 
WikiGenes - Universities