The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Hypt  -  hypertension

Mus musculus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hypt

 

Psychiatry related information on Hypt

 

High impact information on Hypt

 

Chemical compound and disease context of Hypt

 

Biological context of Hypt

 

Anatomical context of Hypt

  • These results suggest that increased activation of central AT-1 receptors, perhaps those located at sites involved in AVP release from the posterior pituitary gland, plays a role in the hypertension in RA+ mice [19].
  • Although these studies demonstrated protection from hypertension-induced changes in the heart and large arteries, renal arteries were not studied and follow-up did not extend beyond 6 months of age [24].
  • As BP reached its plateau in NT ( approximately 1 week after clip), hypertension began to abate and eventually stabilized at significantly lower levels in NSE-AT(1a) mice despite marked elevations in Ang II levels in brain stem and hypothalamus at these later time points [25].
  • Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle [26].
  • In both humans and mice, pulmonary hypertension is associated with a substantial increase in 5-HT(2B) receptor expression in pulmonary arteries [27].
 

Associations of Hypt with chemical compounds

 

Physical interactions of Hypt

 

Regulatory relationships of Hypt

 

Other interactions of Hypt

 

Analytical, diagnostic and therapeutic context of Hypt

  • While further experiments need to be done on dose-response relationships and on the cellular mechanisms of these effects, the results show the feasibility of AAV as a vector for antisense inhibition, which may ultimately be used in gene therapy for hypertension [20].
  • Antisense inhibition is being developed for the treatment of hypertension, myocardial ischaemia and improved allograft survival in human vascular bypass grafts [40].
  • Subsequent progression of this intrarenal process after cessation of treatment suggests an independent process that eventually results in malignant hypertension and early death [24].
  • The acceleration of atherosclerosis by polygenic (essential) hypertension is well-characterized in humans; however, the lack of an animal model that simulates human disease hinders the elucidation of pathogenic mechanisms [41].
  • These data indicate that PI3Kgamma is a key transducer of the intracellular signals that are evoked by angiotensin II and suggest that blocking PI3Kgamma function might be exploited to improve therapeutic intervention on hypertension [42].

References

  1. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. Masuzaki, H., Yamamoto, H., Kenyon, C.J., Elmquist, J.K., Morton, N.M., Paterson, J.M., Shinyama, H., Sharp, M.G., Fleming, S., Mullins, J.J., Seckl, J.R., Flier, J.S. J. Clin. Invest. (2003) [Pubmed]
  2. Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. Matsusaka, T., Katori, H., Inagami, T., Fogo, A., Ichikawa, I. J. Clin. Invest. (1999) [Pubmed]
  3. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Siragy, H.M., Inagami, T., Ichiki, T., Carey, R.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  4. Alterations of angiotensin II receptor contents in hypertrophied hearts. Fujii, N., Tanaka, M., Ohnishi, J., Yukawa, K., Takimoto, E., Shimada, S., Naruse, M., Sugiyama, F., Yagami, K., Murakami, K. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  5. Increased vascular sensitivity to angiotensin ii in psychosocial hypertensive mice. Webb, R.C., Johnson, J.C., Vander, A.J., Henry, J.P. Hypertension (1983) [Pubmed]
  6. Inhibition of adrenal cortical steroid formation by procaine is mediated by reduction of the cAMP-induced 3-hydroxy-3-methylglutaryl-coenzyme A reductase messenger ribonucleic acid levels. Xu, J., Lecanu, L., Han, Z., Yao, Z., Greeson, J., Papadopoulos, V. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  7. Molecular pathogenesis of subarachnoid haemorrhage. Zhang, B., Fugleholm, K., Day, L.B., Ye, S., Weller, R.O., Day, I.N. Int. J. Biochem. Cell Biol. (2003) [Pubmed]
  8. Deficits in spatial learning and nicotinic-acetylcholine receptors in older, spontaneously hypertensive rats. Terry, A.V., Hernandez, C.M., Buccafusco, J.J., Gattu, M. Neuroscience (2000) [Pubmed]
  9. Psychosocial factors in the development of hypertension. Steptoe, A. Ann. Med. (2000) [Pubmed]
  10. The molecular basis of hypertension. Garbers, D.L., Dubois, S.K. Annu. Rev. Biochem. (1999) [Pubmed]
  11. Mouse models of insulin resistance. Nandi, A., Kitamura, Y., Kahn, C.R., Accili, D. Physiol. Rev. (2004) [Pubmed]
  12. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. AbdAlla, S., Lother, H., Langer, A., el Faramawy, Y., Quitterer, U. Cell (2004) [Pubmed]
  13. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Kahle, K.T., Wilson, F.H., Leng, Q., Lalioti, M.D., O'Connell, A.D., Dong, K., Rapson, A.K., MacGregor, G.G., Giebisch, G., Hebert, S.C., Lifton, R.P. Nat. Genet. (2003) [Pubmed]
  14. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Ohki-Hamazaki, H., Watase, K., Yamamoto, K., Ogura, H., Yamano, M., Yamada, K., Maeno, H., Imaki, J., Kikuyama, S., Wada, E., Wada, K. Nature (1997) [Pubmed]
  15. Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. Ahn, D., Ge, Y., Stricklett, P.K., Gill, P., Taylor, D., Hughes, A.K., Yanagisawa, M., Miller, L., Nelson, R.D., Kohan, D.E. J. Clin. Invest. (2004) [Pubmed]
  16. Propranolol ameliorates the development of portal-systemic shunting in a chronic murine schistosomiasis model of portal hypertension. Sarin, S.K., Groszmann, R.J., Mosca, P.G., Rojkind, M., Stadecker, M.J., Bhatnagar, R., Reuben, A., Dayal, Y. J. Clin. Invest. (1991) [Pubmed]
  17. Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2. Kotelevtsev, Y., Brown, R.W., Fleming, S., Kenyon, C., Edwards, C.R., Seckl, J.R., Mullins, J.J. J. Clin. Invest. (1999) [Pubmed]
  18. Reversal of experimental pulmonary hypertension by PDGF inhibition. Schermuly, R.T., Dony, E., Ghofrani, H.A., Pullamsetti, S., Savai, R., Roth, M., Sydykov, A., Lai, Y.J., Weissmann, N., Seeger, W., Grimminger, F. J. Clin. Invest. (2005) [Pubmed]
  19. The brain renin-angiotensin system contributes to the hypertension in mice containing both the human renin and human angiotensinogen transgenes. Davisson, R.L., Yang, G., Beltz, T.G., Cassell, M.D., Johnson, A.K., Sigmund, C.D. Circ. Res. (1998) [Pubmed]
  20. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Phillips, M.I. Hypertension (1997) [Pubmed]
  21. Angiotensin II AT2 receptor localization in cardiovascular tissues by its antibody developed in AT2 gene-deleted mice. Utsunomiya, H., Nakamura, M., Kakudo, K., Inagami, T., Tamura, M. Regul. Pept. (2005) [Pubmed]
  22. Angiotensin type 2 receptor-mediated phosphorylation of eNOS in the aortas of mice with 2-kidney, 1-clip hypertension. Hiyoshi, H., Yayama, K., Takano, M., Okamoto, H. Hypertension (2005) [Pubmed]
  23. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Aitman, T.J., Glazier, A.M., Wallace, C.A., Cooper, L.D., Norsworthy, P.J., Wahid, F.N., Al-Majali, K.M., Trembling, P.M., Mann, C.J., Shoulders, C.C., Graf, D., St Lezin, E., Kurtz, T.W., Kren, V., Pravenec, M., Ibrahimi, A., Abumrad, N.A., Stanton, L.W., Scott, J. Nat. Genet. (1999) [Pubmed]
  24. Temporary losartan or captopril in young SHR induces malignant hypertension despite initial normotension. Racasan, S., Hahnel, B., van der Giezen, D.M., Blezer, E.L., Goldschmeding, R., Braam, B., Kriz, W., Koomans, H.A., Joles, J.A. Kidney Int. (2004) [Pubmed]
  25. Renovascular hypertension in mice with brain-selective overexpression of AT1a receptors is buffered by increased nitric oxide production in the periphery. Lazartigues, E., Lawrence, A.J., Lamb, F.S., Davisson, R.L. Circ. Res. (2004) [Pubmed]
  26. Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Iwamoto, T., Kita, S., Zhang, J., Blaustein, M.P., Arai, Y., Yoshida, S., Wakimoto, K., Komuro, I., Katsuragi, T. Nat. Med. (2004) [Pubmed]
  27. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Launay, J.M., Hervé, P., Peoc'h, K., Tournois, C., Callebert, J., Nebigil, C.G., Etienne, N., Drouet, L., Humbert, M., Simonneau, G., Maroteaux, L. Nat. Med. (2002) [Pubmed]
  28. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Zeng, C., Yang, Z., Wang, Z., Jones, J., Wang, X., Altea, J., Mangrum, A.J., Hopfer, U., Sibley, D.R., Eisner, G.M., Felder, R.A., Jose, P.A. Hypertension (2005) [Pubmed]
  29. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Kazama, K., Anrather, J., Zhou, P., Girouard, H., Frys, K., Milner, T.A., Iadecola, C. Circ. Res. (2004) [Pubmed]
  30. Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. Albrecht, F.E., Drago, J., Felder, R.A., Printz, M.P., Eisner, G.M., Robillard, J.E., Sibley, D.R., Westphal, H.J., Jose, P.A. J. Clin. Invest. (1996) [Pubmed]
  31. Roles of angiotensin type 1 and 2 receptors in pregnancy-associated blood pressure change. Takeda-Matsubara, Y., Iwai, M., Cui, T.X., Shiuchi, T., Liu, H.W., Okumura, M., Ito, M., Horiuchi, M. Am. J. Hypertens. (2004) [Pubmed]
  32. Genetic AT1A receptor deficiency attenuates cold-induced hypertension. Sun, Z., Wang, X., Wood, C.E., Cade, J.R. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2005) [Pubmed]
  33. A novel gene (Cmya3) induced in the heart by angiotensin II-dependent but not salt-dependent hypertension in mice. Duka, A., Schwartz, F., Duka, I., Johns, C., Melista, E., Gavras, I., Gavras, H. Am. J. Hypertens. (2006) [Pubmed]
  34. Receptor-activating peptides distinguish thrombin receptor (PAR-1) and protease activated receptor 2 (PAR-2) mediated hemodynamic responses in vivo. Cheung, W.M., Andrade-Gordon, P., Derian, C.K., Damiano, B.P. Can. J. Physiol. Pharmacol. (1998) [Pubmed]
  35. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Frank, D.B., Abtahi, A., Yamaguchi, D.J., Manning, S., Shyr, Y., Pozzi, A., Baldwin, H.S., Johnson, J.E., de Caestecker, M.P. Circ. Res. (2005) [Pubmed]
  36. Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Lochard, N., Thibault, G., Silversides, D.W., Touyz, R.M., Reudelhuber, T.L. Circ. Res. (2004) [Pubmed]
  37. Human chymase expression in a mice induces mild hypertension with left ventricular hypertrophy. Koga, T., Urata, H., Inoue, Y., Hoshino, T., Okamoto, T., Matsunaga, A., Suzuki, M., Miyazaki, J., Ideishi, M., Arakawa, K., Saku, K. Hypertens. Res. (2003) [Pubmed]
  38. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Lopez, M.J., Wong, S.K., Kishimoto, I., Dubois, S., Mach, V., Friesen, J., Garbers, D.L., Beuve, A. Nature (1995) [Pubmed]
  39. Salt-sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Kennedy, C.R., Zhang, Y., Brandon, S., Guan, Y., Coffee, K., Funk, C.D., Magnuson, M.A., Oates, J.A., Breyer, M.D., Breyer, R.M. Nat. Med. (1999) [Pubmed]
  40. The potential role of antisense oligodeoxynucleotide therapy for cardiovascular disease. Phillips, M.I., Galli, S.M., Mehta, J.L. Drugs (2000) [Pubmed]
  41. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Herrera, V.L., Makrides, S.C., Xie, H.X., Adari, H., Krauss, R.M., Ryan, U.S., Ruiz-Opazo, N. Nat. Med. (1999) [Pubmed]
  42. Protection from angiotensin II-mediated vasculotoxic and hypertensive response in mice lacking PI3Kgamma. Vecchione, C., Patrucco, E., Marino, G., Barberis, L., Poulet, R., Aretini, A., Maffei, A., Gentile, M.T., Storto, M., Azzolino, O., Brancaccio, M., Colussi, G.L., Bettarini, U., Altruda, F., Silengo, L., Tarone, G., Wymann, M.P., Hirsch, E., Lembo, G. J. Exp. Med. (2005) [Pubmed]
 
WikiGenes - Universities