The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lidocaine impairs vasodilation mediated by adenosine triphosphate-sensitive K+ channels but not by inward rectifier K+ channels in rat cerebral microvessels.

Vasodilator effects of adenosine triphosphate (ATP)-sensitive, as well as inward rectifier, K+ channel openers have not been well demonstrated in cerebral microvessels. Although lidocaine impairs vasorelaxation via ATP-sensitive K+ channels in the rat aorta, the effects of this compound on K+ channels in the cerebral circulation have not been shown. We designed the present study to examine whether ATP-sensitive and inward rectifier K+ channels contribute to vasodilator responses in cerebral microvessels and whether the vasodilation mediated by these channels is inhibited by lidocaine. Rat brain slices were monitored using a computer-assisted videomicroscopy. Cerebral parenchymal arterioles (diameter, 5-10 microm) were contracted with prostaglandin F(2alpha), and thereafter potassium chloride (KCl), levcromakalim, or sodium nitroprusside was added to the perfusion chamber. Levcromakalim and KCl produced vasodilation of the cerebral parenchymal arterioles, which was abolished by an ATP-sensitive K+ channel antagonist, glibenclamide, or an inward rectifier K+ channel antagonist, barium chloride, respectively. Lidocaine (10(-5) to 3 x 10(-5) M) inhibited the dilation produced by levcromakalim but not by KCl or sodium nitroprusside. In parenchymal arterioles of the cerebral cortex, lidocaine seems to reduce vasodilation mediated by ATP-sensitive K+ channels but not by inward rectifier K+ channels.[1]

References

 
WikiGenes - Universities