The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Tibolone is metabolized by the 3alpha/3beta-hydroxysteroid dehydrogenase activities of the four human isozymes of the aldo-keto reductase 1C subfamily: inversion of stereospecificity with a delta5(10)-3-ketosteroid.

Tibolone is used to treat climacteric complaints and prevent osteoporosis. These beneficial effects are exerted via its 3alpha-and 3beta-hydroxymetabolites. Undesirable stimulation of the breast and endometrium is not apparent. Endometrial stimulation is prevented by the progestogenic activity of its Delta4-ene metabolite. The enzymes responsible for the formation of these active metabolites are unknown. Human aldo-keto reductase (AKR)1C isoforms have been shown to act as 3alpha/3beta-hydroxysteroid dehydrogenases (HSDs) on 5alpha-dihydrotestosterone (5alpha-DHT). We show that AKR1Cs also efficiently catalyze the reduction of the Delta(5(10))-3-ketosteroid tibolone to yield 3alpha- and 3beta-hydroxytibolone. Homogeneous recombinant AKR1C1, AKR1C3, and AKR1C4 gave similar catalytic profiles to those observed with 5alpha-DHT. AKR1C1 catalyzed exclusively the formation of 3beta-hydroxytibolone, AKR1C3 showed weak 3beta/3alpha-HSD activity, and AKR1C4 acted predominantly as a 3alpha-HSD. Whereas AKR1C2 acted as a 3alpha-HSD toward 5alpha-DHT, it functioned exclusively as a 3beta-HSD on tibolone. Furthermore, strong substrate inhibition was observed for the AKR1C2 catalyzed reduction of tibolone. Using NAD+, the 3-hydroxymetabolites were efficiently oxidized by homogeneous recombinant AKR1C2 and AKR1C4. However, because of potent inhibition of this activity by NADPH, AKR1Cs will probably act only as 3-ketosteroid reductases in vivo. Molecular docking simulations using crystal structures of AKR1C1 and AKR1C2 explained why AKR1C2 inverted its stereospecificity from a 3alpha-HSD with 5alpha-DHT to a 3beta-HSD with tibolone. The preference for AKR1C1 and AKR1C2 to form 3beta-hydroxytibolone, and the preference of the liver-specific AKR1C4 to form 3alpha-hydroxytibolone, may explain why 3beta-hydroxytibolone is the major metabolite in human target tissues and why 3alpha-hydroxytibolone is the major circulating metabolite.[1]

References

 
WikiGenes - Universities