The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of the Met344His mutation on the conformational dynamics of bovine beta-1,4-galactosyltransferase: crystal structure of the Met344His mutant in complex with chitobiose.

Beta-1,4-galactosyltransferase (beta4Gal-T1) in the presence of manganese ion transfers galactose from UDP-galactose (UDP-Gal) to N-acetylglucosamine (GlcNAc) that is either free or linked to an oligosaccharide. Crystallographic studies on bovine beta4Gal-T1 have shown that the primary metal binding site is located in the hinge region of a long flexible loop, which upon Mn(2+) and UDP-Gal binding changes from an open to a closed conformation. This conformational change creates an oligosaccharide binding site in the enzyme. Neither UDP nor UDP analogues efficiently induce these conformational changes in the wild-type enzyme, thereby restricting the structural analysis of the acceptor binding site. The binding of Mn(2+) involves an uncommon coordination to the Sdelta atom of Met344; when it is mutated to His, the mutant M344H, in the presence of Mn(2+) and UDP-hexanolamine, readily changes to a closed conformation, facilitating the structural analysis of the enzyme bound with an oligosaccharide acceptor. Although the mutant M344H loses 98% of its Mn(2+)-dependent activity, it exhibits 25% of its activity in the presence of Mg(2+). The crystal structures of M344H-Gal-T1 in complex with either UDP-Gal.Mn(2+) or UDP-Gal.Mg(2+), determined at 2.3 A resolution, show that the mutant enzyme in these complexes is in a closed conformation, and the coordination stereochemistry of Mg(2+) is quite similar to that of Mn(2+). Although either Mn(2+) or Mg(2+), together with UDP-Gal, binds and changes the conformation of the M344H mutant to the closed one, it is the Mg(2+) complex that engages efficiently in catalyses. Thus, this property enabled us to crystallize the M344H mutant for the first time with the acceptor substrate chitobiose in the presence of UDP-hexanolamine and Mn(2+). The crystal structure determined at 2.3 A resolution reveals that the GlcNAc residue at the nonreducing end of chitobiose makes extensive hydrophobic interactions with the highly conserved Tyr286 residue.[1]


WikiGenes - Universities