The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Udpgal     [[(2R,3S,4R,5R)-5-(2,4- dioxopyrimidin-1...

Synonyms: UDPgalactose, UDP-Gal, UDP-galactose, Udp galactose, CHEMBL439009, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Udp galactose

  • A large-scale production system of uridine 5'-diphospho-galactose (UDP-Gal) has been established by the combination of recombinant Escherichia coli and Corynebacterium ammoniagenes [1].
  • When E. coli cells that expressed the alpha1,4-galactosyltransferase gene of Neisseria gonorrhoeae were coupled with this UDP-Gal production system, 372 mM (188 g/L) globotriose (Galalpha1-4Galbeta1-4Glc), a trisaccharide portion of verotoxin receptor, was produced after a 36 h reaction starting with orotic acid, galactose, and lactose [1].
  • Epimerase-deficiency galactosemia results from the impairment of UDP-galactose 4'-epimerase (GALE), the third enzyme in the Leloir pathway of galactose metabolism [2].
  • The amount of mRNA for UDP-Gal transporter was significantly increased in colon cancer tissues compared with nonmalignant mucosa tissues (P = 0.035; n = 20) [3].
  • The increase was more prominent in patients with advanced colorectal cancer of Dukes' stages C and D, in which the amount of UDP-Gal transporter mRNA in cancer tissues showed on average about a 3.6-fold increase over the paired nonmalignant mucosa (statistically significant at P = 0.004; n = 14) [3].

High impact information on Udp galactose

  • Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant [4].
  • Purified galactosyltransferase and components F-1 and F-2 all catalyzed the transfer of galactose from UDP-galactose to alkali-stable beta-N-glycosidic acceptors, as well as to alkali-labile beta-O-glycosidic mucin-type acceptors [5].
  • The core 1 beta1-3-galactosyltransferase (T-synthase) transfers Gal from UDP-Gal to GalNAcalpha1-Ser/Thr (Tn antigen) to form the core 1 O-glycan Galbeta1-3GalNAcalpha1-Ser/Thr (T antigen) [6].
  • Acceptor Golgi apparatus was prepared from another mutant, Lec8, which is defective in UDP-Gal transport [7].
  • Conversely, neurite outgrowth was enhanced by the addition of UDP-galactose, which completes the GalTase enzymatic reaction, while inappropriate sugar nucleotides had no effect [8].

Chemical compound and disease context of Udp galactose


Biological context of Udp galactose


Anatomical context of Udp galactose


Associations of Udp galactose with other chemical compounds


Gene context of Udp galactose


Analytical, diagnostic and therapeutic context of Udp galactose


  1. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Koizumi, S., Endo, T., Tabata, K., Ozaki, A. Nat. Biotechnol. (1998) [Pubmed]
  2. Epimerase-deficiency galactosemia is not a binary condition. Openo, K.K., Schulz, J.M., Vargas, C.A., Orton, C.S., Epstein, M.P., Schnur, R.E., Scaglia, F., Berry, G.T., Gottesman, G.S., Ficicioglu, C., Slonim, A.E., Schroer, R.J., Yu, C., Rangel, V.E., Keenan, J., Lamance, K., Fridovich-Keil, J.L. Am. J. Hum. Genet. (2006) [Pubmed]
  3. Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants. Kumamoto, K., Goto, Y., Sekikawa, K., Takenoshita, S., Ishida, N., Kawakita, M., Kannagi, R. Cancer Res. (2001) [Pubmed]
  4. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Kingsley, D.M., Kozarsky, K.F., Hobbie, L., Krieger, M. Cell (1986) [Pubmed]
  5. Biochemical and immunologic characterization of galactosyltransferase purified from the ascites of ovarian cancer patients. Chatterjee, S.K., Bhattacharya, M., Barlow, J.J. J. Natl. Cancer Inst. (1985) [Pubmed]
  6. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. Xia, L., Ju, T., Westmuckett, A., An, G., Ivanciu, L., McDaniel, J.M., Lupu, F., Cummings, R.D., McEver, R.P. J. Cell Biol. (2004) [Pubmed]
  7. Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system. Wattenberg, B.W. J. Cell Biol. (1990) [Pubmed]
  8. Cell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin. Begovac, P.C., Shur, B.D. J. Cell Biol. (1990) [Pubmed]
  9. Structure of a polysaccharide containing galactose and galacturonic acid from Rhizobium meliloti. Characterization and partial purification of a 2-O-methyltransferase. Coira, J.A., Cavaignac, S., Ugalde, R.A. J. Biol. Chem. (1987) [Pubmed]
  10. Cloning and characterization of AtRGP1. A reversibly autoglycosylated arabidopsis protein implicated in cell wall biosynthesis. Delgado, I.J., Wang, Z., de Rocher, A., Keegstra, K., Raikhel, N.V. Plant Physiol. (1998) [Pubmed]
  11. Kinetic mechanism of UDP-hexose synthase, a point variant of hexose-1-phosphate uridylyltransferase from Escherichia coli. Ruzicka, F.J., Geeganage, S., Frey, P.A. Biochemistry (1998) [Pubmed]
  12. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Ellison, R.T., Giehl, T.J., LaForce, F.M. Infect. Immun. (1988) [Pubmed]
  13. Amino-acid substitution in the disordered loop of blood group B-glycosyltransferase enzyme causes weak B phenotype. Yazer, M.H., Denomme, G.A., Rose, N.L., Palcic, M.M. Transfusion (2005) [Pubmed]
  14. UDP-galactopyranose mutase has a novel structure and mechanism. Sanders, D.A., Staines, A.G., McMahon, S.A., McNeil, M.R., Whitfield, C., Naismith, J.H. Nat. Struct. Biol. (2001) [Pubmed]
  15. Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Guillen, E., Abeijon, C., Hirschberg, C.B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  16. SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Berninsone, P., Hwang, H.Y., Zemtseva, I., Horvitz, H.R., Hirschberg, C.B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  17. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Guarente, L., Yocum, R.R., Gifford, P. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  18. Determinants of function and substrate specificity in human UDP-galactose 4'-epimerase. Schulz, J.M., Watson, A.L., Sanders, R., Ross, K.L., Thoden, J.B., Holden, H.M., Fridovich-Keil, J.L. J. Biol. Chem. (2004) [Pubmed]
  19. Ectogalactosyltransferase studies in fibroblasts and concanavalin A-stimulated lymphocytes. Patt, L.M., Endres, R.O., Lucas, D.O., Grimes, W.J. J. Cell Biol. (1976) [Pubmed]
  20. A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. Shur, B.D., Hall, N.G. J. Cell Biol. (1982) [Pubmed]
  21. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Kelly, A.A., Froehlich, J.E., Dörmann, P. Plant Cell (2003) [Pubmed]
  22. Growth regulators and the control of nucleotide sugar flux. Seifert, G.J., Barber, C., Wells, B., Roberts, K. Plant Cell (2004) [Pubmed]
  23. Transport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. Toma, L., Pinhal, M.A., Dietrich, C.P., Nader, H.B., Hirschberg, C.B. J. Biol. Chem. (1996) [Pubmed]
  24. Characterization of two mutations associated with epimerase-deficiency galactosemia, by use of a yeast expression system for human UDP-galactose-4-epimerase. Quimby, B.B., Alano, A., Almashanu, S., DeSandro, A.M., Cowan, T.M., Fridovich-Keil, J.L. Am. J. Hum. Genet. (1997) [Pubmed]
  25. Membrane abnormality in red blood cells with weak type B expression. Yoshida, A., Fujii, H., Davé, V., Cozant, M.J., Morel, P.A. Blood (1980) [Pubmed]
  26. Photoaffinity labeling of lactose synthase with a UDP-galactose analogue. Lee, T.K., Wong, L.J., Wong, S.S. J. Biol. Chem. (1983) [Pubmed]
  27. Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. Kawar, Z.S., Van Die, I., Cummings, R.D. J. Biol. Chem. (2002) [Pubmed]
  28. Substrate recognition by nucleotide sugar transporters: further characterization of substrate recognition regions by analyses of UDP-galactose/CMP-sialic acid transporter chimeras and biochemical analysis of the substrate specificity of parental and chimeric transporters. Aoki, K., Ishida, N., Kawakita, M. J. Biol. Chem. (2003) [Pubmed]
  29. Mucin biosynthesis. Characterization of UDP-galactose: alpha-N-acetylgalactosaminide beta 3 galactosyltransferase from human tracheal epithelium. Cheng, P.W., Bona, S.J. J. Biol. Chem. (1982) [Pubmed]
  30. DGD2, an arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. Kelly, A.A., Dörmann, P. J. Biol. Chem. (2002) [Pubmed]
  31. Elevation of 4 beta-galactosyltransferase activity for paragloboside synthesis in sera of patients with cancer. Nishiwaki, S., Taki, T., Handa, N., Hattori, N., Takeshita, K., Endo, M., Handa, S. Cancer Res. (1992) [Pubmed]
  32. Muscle uridine diphosphate-hexosamines do not decrease despite correction of hyperglycemia-induced insulin resistance in type 2 diabetes. Pouwels, M.J., Span, P.N., Tack, C.J., Olthaar, A.J., Sweep, C.G., van Engelen, B.G., de Jong, J.G., Lutterman, J.A., Hermus, A.R. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  33. Orientation and role of nucleosidediphosphatase and 5'-nucleotidase in Golgi vesicles from rat liver. Brandan, E., Fleischer, B. Biochemistry (1982) [Pubmed]
  34. Increased glycosylation capacity in regenerating rat liver is paralleled by decreased activities of CMP-N-acetylneuraminate hydrolase and UDP-galactose pyrophosphatase. Van Dijk, W., Lasthuis, A.M., Trippelvitz, L.A., Muilerman, H.G. Biochem. J. (1983) [Pubmed]
  35. Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line. Bakker, H., Routier, F., Oelmann, S., Jordi, W., Lommen, A., Gerardy-Schahn, R., Bosch, D. Glycobiology (2005) [Pubmed]
WikiGenes - Universities