The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulatory potential and control of Foxp3 expression in newborn CD4+ T cells.

Thymectomy at day 3 after birth leads to autoimmune disease in some genetic backgrounds. Disease is thought to be caused by the lack/paucity of regulatory T cells. We show that 3-day-old mice already contain a significant compartment of Foxp3-expressing CD25(+)CD4(+) splenocytes. Whereas, in adult spleen, the subsets of regulatory T cells (CD25(+) and/or CD103(+)) express high amounts of Foxp3 mRNA, in 3-day-old mice, both thymic and splenic CD25(+)CD4(+) T cell subsets express lower amounts of Foxp3 mRNA, and CD103(+) cells are barely detected. In adult day 3-thymectomized mice, the CD25(+)CD4(+) T cell subset is overrepresented (most of the cells being CD103(+)) and expresses high amounts of Foxp3 mRNA, independent of the development of autoimmune gastritis. These cells control inflammatory bowel disease and the homeostatic expansion of lymphocytes. This study demonstrates that the peripheral immune system of newborn mice is endowed of a remarkable regulatory potential, which develops considerably in the absence of thymic supply.[1]


  1. Regulatory potential and control of Foxp3 expression in newborn CD4+ T cells. Dujardin, H.C., Burlen-Defranoux, O., Boucontet, L., Vieira, P., Cumano, A., Bandeira, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
WikiGenes - Universities