Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium.
The functional diversity of cytochrome P450s (P450s) of the white-rot basidiomycete, Phanerochaete chrysosporium, was studied. A series of compounds known to be P450 substrates of other organisms were utilized for metabolic studies of P. chrysosporium. Metabolic conversions of benzoic acid, camphor, 1,8-cineol, cinnamic acid, p-coumaric acid, coumarin, cumene, 1,12-dodecanediol, 1-dodecanol, 4-ethoxybenzoic acid, and 7-ethoxycoumarin were observed with P. chrysosporium for the first time. 1-Dodecanol was hydroxylated at seven different positions to form 1,12-, 1,11-, 1,10-, 1,9-, 1,8-, 1,7-, and 1,6-dodecandiols. The effect of piperonyl butoxide, a P450 inhibitor, on the fungal conversion of 1-dodecanol was also investigated, indicating that hydroxylation reactions of 1-dodecanol were inhibited by piperonyl butoxide in a concentration-dependent manner. With 11 substrates, 23 hydroxylation reactions and 2 deethylation reactions were determined and 6 products were new with the position of hydroxyl group incorporated. In conclusion, fungal P450s were shown to have diverse and unique functions.[1]References
- Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Matsuzaki, F., Wariishi, H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg