The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chrysosporium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chrysosporium

 

High impact information on Chrysosporium

  • Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes [4].
  • Binding properties of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium against a synthetic lignin (dehydrogenated polymerizate, DHP) were studied with a resonant mirror biosensor [5].
  • Our studies here show that the white-rot fungus Phanerochaete chrysosporium produces extracellular oxalate under conditions that induce synthesis of the ligninolytic system [6].
  • The H2O2-requiring ligninase of the basidiomycete Phanerochaete chrysosporium oxidatively cleaves both lignin and lignin model compounds between C alpha and C beta (C-1 and C-2) of their aliphatic side chains [7].
  • One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase [8].
 

Chemical compound and disease context of Chrysosporium

 

Biological context of Chrysosporium

 

Anatomical context of Chrysosporium

  • Therefore, we conclude that the extracellular BGL from P. chrysosporium is primarily a glucan 1,3-beta-glucosidase (EC 3.2.1.58), which might play a role on fungal cell wall metabolism, rather than a beta-glucosidase (EC 3.2.1.21), which might be involved in the hydrolysis of beta-1,4-glucosidic compounds during cellulose degradation [16].
 

Associations of Chrysosporium with chemical compounds

 

Gene context of Chrysosporium

 

Analytical, diagnostic and therapeutic context of Chrysosporium

References

  1. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. Goszczynski, S., Paszczynski, A., Pasti-Grigsby, M.B., Crawford, R.L., Crawford, D.L. J. Bacteriol. (1994) [Pubmed]
  2. Determination of the toxicity of several aromatic carbonylic compounds and their reduced derivatives on Phanerochaete chrysosporium using a Pseudomonas putida test system. Hage, A., Schoemaker, H.E., Wever, R., Zennaro, E., Heipieper, H.J. Biotechnol. Bioeng. (2001) [Pubmed]
  3. Enhanced production of manganese peroxidase from immobilized Phanerochaete chrysosporium due to the increased autolysis of chlamydospore-like cells. Chung, E., Oh, J., Hwang, S., Ahn, I.S., Yoon, Y.J. Biotechnol. Lett. (2005) [Pubmed]
  4. Biological degradation of 2,4,6-trinitrotoluene. Esteve-Núñez, A., Caballero, A., Ramos, J.L. Microbiol. Mol. Biol. Rev. (2001) [Pubmed]
  5. Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Johjima, T., Itoh, N., Kabuto, M., Tokimura, F., Nakagawa, T., Wariishi, H., Tanaka, H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  6. Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Kuan, I.C., Tien, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Substrate free radicals are intermediates in ligninase catalysis. Hammel, K.E., Kalyanaraman, B., Kirk, T.K. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  8. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martínez, M.J., Martínez, A.T. J. Biol. Chem. (1999) [Pubmed]
  9. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Paszczynski, A., Pasti-Grigsby, M.B., Goszczynski, S., Crawford, R.L., Crawford, D.L. Appl. Environ. Microbiol. (1992) [Pubmed]
  10. Homologous expression of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistance as a dominant selectable marker. Ma, B., Mayfield, M.B., Gold, M.H. Curr. Genet. (2003) [Pubmed]
  11. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. Wariishi, H., Dunford, H.B., MacDonald, I.D., Gold, M.H. J. Biol. Chem. (1989) [Pubmed]
  12. Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Hawari, J., Halasz, A., Beaudet, S., Paquet, L., Ampleman, G., Thiboutot, S. Appl. Environ. Microbiol. (1999) [Pubmed]
  13. A novel extrachromosomally maintained transformation vector for the lignin-degrading basidiomycete Phanerochaete chrysosporium. Randall, T., Reddy, C.A., Boominathan, K. J. Bacteriol. (1991) [Pubmed]
  14. Role of arginine 177 in the MnII binding site of manganese peroxidase. Studies with R177D, R177E, R177N, and R177Q mutants. Gelpke, M.D., Youngs, H.L., Gold, M.H. Eur. J. Biochem. (2000) [Pubmed]
  15. Fatty acyl-coenzyme A oxidase activity and H2O2 production in Phanerochaete chrysosporium mycelia. Greene, R.V., Gould, J.M. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  16. Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. Igarashi, K., Tani, T., Rie, K., Masahiro, S. J. Biosci. Bioeng. (2003) [Pubmed]
  17. Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. Kuan, I.C., Johnson, K.A., Tien, M. J. Biol. Chem. (1993) [Pubmed]
  18. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. Tien, M., Kirk, T.K., Bull, C., Fee, J.A. J. Biol. Chem. (1986) [Pubmed]
  19. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. Wariishi, H., Valli, K., Gold, M.H. J. Biol. Chem. (1992) [Pubmed]
  20. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. Forney, L.J., Reddy, C.A., Tien, M., Aust, S.D. J. Biol. Chem. (1982) [Pubmed]
  21. Spectral characterization of diarylpropane oxygenase, a novel peroxide-dependent, lignin-degrading heme enzyme. Andersson, L.A., Renganathan, V., Chiu, A.A., Loehr, T.M., Gold, M.H. J. Biol. Chem. (1985) [Pubmed]
  22. Cloning of Phanerochaete chrysosporium leu2 by complementation of bacterial auxotrophs and transformation of fungal auxotrophs. Zapanta, L.S., Hattori, T., Rzetskaya, M., Tien, M. Appl. Environ. Microbiol. (1998) [Pubmed]
  23. An 8.2 kb DNA segment from chromosome XIV carries the RPD3 and PAS8 genes as well as the Saccharomyces cerevisiae homologue of the thiamine-repressed nmt1 gene and a chromosome III-duplicated gene for a putative aryl-alcohol dehydrogenase. Van Dyck, L., Pascual-Ahuir, A., Purnelle, B., Goffeau, A. Yeast (1995) [Pubmed]
  24. Cloning and sequencing analysis of Trp1 gene of Flammulina velutipes. Nakai, R., Sen, K., Kurosawa, S., Shibai, H. FEMS Microbiol. Lett. (2000) [Pubmed]
  25. The trpC gene of Phanerochaete chrysosporium is unique in containing an intron but nevertheless maintains the order of functional domains seen in other fungi. Schrank, A., Tempelaars, C., Sims, P.F., Oliver, S.G., Broda, P. Mol. Microbiol. (1991) [Pubmed]
  26. Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Sollewijn Gelpke, M.D., Mayfield-Gambill, M., Lin Cereghino, G.P., Gold, M.H. Appl. Environ. Microbiol. (1999) [Pubmed]
  27. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Bezalel, L., Hadar, Y., Fu, P.P., Freeman, J.P., Cerniglia, C.E. Appl. Environ. Microbiol. (1996) [Pubmed]
  28. Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Li, B., Nagalla, S.R., Renganathan, V. Appl. Environ. Microbiol. (1996) [Pubmed]
  29. Pyranose 2-oxidase from Phanerochaete chrysosporium--further biochemical characterisation. Artolozaga, M.J., Kubátová, E., Volc, J., Kalisz, H.M. Appl. Microbiol. Biotechnol. (1997) [Pubmed]
  30. Pulmonary adiaspiromycosis in a patient with acquired immunodeficiency syndrome. Turner, D., Burke, M., Bashe, E., Blinder, S., Yust, I. Eur. J. Clin. Microbiol. Infect. Dis. (1999) [Pubmed]
  31. Production of manganese-dependent peroxidase in a new solid-state bioreactor by Phanerochaete chrysosporium grown on wood shavings. Application to the decolorization of synthetic dyes. Rodríguez Couto, S., Domínguez, A., Sanromán, A. Folia Microbiol. (Praha) (2002) [Pubmed]
 
WikiGenes - Universities