The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Crystal structure, thermal behavior and enzymatic degradation of poly(tetramethylene adipate) solution-grown chain-folded lamellar crystals.

Solution-grown chain-folded lamellar single crystals of poly(tetramethylene adipate) (PTMA) were prepared from a dilute solution of 2-methyl-1-propanol by isothermal crystallization. PTMA crystals were hexagonal-shaped and polyethylene decoration of the crystals resulted in a "six cross-sector" surface morphology and showed that the average direction of chain folding is parallel to the crystal growth planes of [110] and [010]. Chain-folded lamellar crystals gave well-resolved electron diffraction diagrams corresponding to all the equatorial reflections of the X-ray fiber diagram obtained from stretched PTMA melt-quenched film (beta structure). The unit cell parameters of the beta structure of PTMA were determined as a = 0.503 nm, b = 0.732 nm and c (fiber axis) = 1.442 nm with an orthorhombic crystal system. The fiber repeat distance is appropriate for an all-trans backbone conformation for the straight stems. The setting angle, with respect to the a axis, is +/-46 degrees for the corner and center chains. Thermal behavior of lamellar crystals has been investigated by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The lamellar thickness at the edges of the crystal increased after thermal treatment with taking the molecular chains into recrystallization parts; the holes then opened up at the thickening front of the crystal. The morphological changes of lamellar crystals after enzymatic degradation by Lipase type XIII from Pseudomonas sp. and water-soluble products were characterized by TEM, AFM, gel permeation chromatography, high performance liquid chromatography and fast atom bombardment mass spectrometry. The degradation progressed mainly from the edges of the lamellar crystals without decreasing the molecular weights and the lamellar thicknesses. The central portion of single crystals was often degraded by enzymatic attacks. This result combined with thermal behavior indicates that the loosely chain-packing region exists inside the single crystal, and that molecular chains in this region have higher mobility against thermal and enzymatic treatments.[1]

References

  1. Crystal structure, thermal behavior and enzymatic degradation of poly(tetramethylene adipate) solution-grown chain-folded lamellar crystals. Iwata, T., Kobayashi, S., Tabata, K., Yonezawa, N., Doi, Y. Macromolecular bioscience. (2004) [Pubmed]
 
WikiGenes - Universities