The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo.

The third member of the family of junctional adhesion molecules (JAMs), JAM-3, also called JAM-C, was recently shown to be a novel counter-receptor on platelets for the leukocyte beta(2)-integrin Mac-1 (alphaMbeta(2), CD11b/CD18). Here, new functional aspects of the role of endothelial cell JAM-C were investigated. Endothelial cells express JAM-C, which is predominantly localized within junctions at interendothelial contacts, since it codistributes with a tight junction component, zonula occludens-1. Whereas JAM-C does not participate in neutrophil adhesion to endothelial cells, it mediates neutrophil transmigration in a Mac-1-dependent manner. In particular, inhibition of JAM-C significantly reduced neutrophil transendothelial migration, and the combination of JAM-C and platelet/endothelial cell adhesion molecule-1 blockade almost completely abolished neutrophil transendothelial migration in vitro. In vivo, inhibition of JAM-C with soluble mouse JAM-C resulted in a 50% reduction of neutrophil emigration in the mouse model of acute thioglycollate-induced peritonitis. Thus, JAM-C participates in neutrophil transmigration and thereby provides a novel molecular target for antagonizing interactions between vascular cells that promote inflammatory vascular pathologies.[1]

References

  1. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. Chavakis, T., Keiper, T., Matz-Westphal, R., Hersemeyer, K., Sachs, U.J., Nawroth, P.P., Preissner, K.T., Santoso, S. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities