The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Stretch-inducible expression of the angiogenic factor CCN1 in vascular smooth muscle cells is mediated by Egr-1.

CCN1 is an angiogenic factor that promotes cell adhesion, proliferation, and differentiation. CCN1-deficient mice suffer embryonic death because of vascular defects, demonstrating that CCN1 is required for vessel development. Because mechanical stretch may act as a trigger for vessel development, we investigated the impact of mechanical stretch on the regulatory mechanism of CCN1 expression. Mechanical stretch rapidly enhances CCN1 expression and release in vascular smooth muscle cells (VSMC) in vitro and CCN1 expression in murine aortic segments in vivo. Transfection experiments of VSMC with deletion constructs of the CCN1 promoter revealed the regulatory region responsible for the stretch- induced CCN1 expression in the approximately 200-bp promoter region upstream of the TATA-box containing potential binding sites for early growth response-1 (Egr-1), nuclear factor of activated T-cells and cAMP response element binding protein. Decoy oligonucleotides to Egr-1, but not to nuclear factor of activated T-cells or cAMP response element binding protein, abolished the stretch-induced transcription of CCN1. In addition, mutagenesis of the Egr-1 binding site within the CCN1 promoter completely blunted the stretch-induced activation of the promoter. Furthermore, mechanical stretch induced the expression and DNA-binding activity of Egr-1 in VSMC as demonstrated by Western blot and electromobility shift assay. Moreover, a pressure overload-dependent de novo synthesis of Egr-1 was observed after aortic banding. These findings indicate that mechanical stretch leads to enhanced expression of CCN1 via the mechanosensitive transcription factor Egr-1, suggesting a central role for mechanical stretch in the regulation of CCN1-dependent pro-angiogenic potency.[1]

References

  1. Stretch-inducible expression of the angiogenic factor CCN1 in vascular smooth muscle cells is mediated by Egr-1. Grote, K., Bavendiek, U., Grothusen, C., Flach, I., Hilfiker-Kleiner, D., Drexler, H., Schieffer, B. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities