Wnt-3a-dependent cell motility involves RhoA activation and is specifically regulated by dishevelled-2.
Wnts stimulate cell migration, although the mechanisms responsible for this effect are not fully understood. To investigate the pathways that mediate Wnt-dependent cell motility, we treated Chinese hamster ovary cells with Wnt-3a-conditioned medium and monitored changes in cell shape and movement. Wnt-3a induced cell spreading, formation of protrusive structures, reorganization of stress fibers and migration. Although Wnt-3a stabilized beta-catenin, two inhibitors of the beta-catenin/canonical pathway, Dickkopf-1 and a dominant-negative T cell factor construct, did not reduce motility. The small GTPase RhoA also was activated by Wnt-3a. In contrast to beta-catenin signaling, inhibition of Rho kinase partially blocked motility. Because Dishevelled (Dvl) proteins are effectors of both canonical and noncanonical Wnt signaling, we used immunofluorescent analysis and small interference RNA technology to evaluate the role of Dvl in cell motility. Specific knock-down of Dvl-2 expression markedly reduced Wnt-3a-dependent changes in cell shape and movement, suggesting that this Dvl isoform had a predominant role in mediating Wnt-3a-dependent motility in Chinese hamster ovary cells.[1]References
- Wnt-3a-dependent cell motility involves RhoA activation and is specifically regulated by dishevelled-2. Endo, Y., Wolf, V., Muraiso, K., Kamijo, K., Soon, L., Uren, A., Barshishat-Küpper, M., Rubin, J.S. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg