The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Stress Fibers

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Stress Fibers


High impact information on Stress Fibers


Chemical compound and disease context of Stress Fibers


Biological context of Stress Fibers


Anatomical context of Stress Fibers


Associations of Stress Fibers with chemical compounds

  • The fluorescently labeled stress fibers remained intact despite glycerol or digitonin extraction of the cells; furthermore, these cell models contracted upon addition of MgATP [21].
  • Thus, this deamidation of glutamine 63 by CNF1 leads to the constitutive activation of Rho, and induces the reorganization of actin stress fibres [25].
  • A recent report in Developmental Cell demonstrates that the activation of a tyrosine kinase, C-terminal Src kinase, by heterotrimeric G protein subunits provides the trigger for Rho-dependent actin stress fiber formation [26].
  • Focus formation, stress fiber dissolution, and activation of the ERK-1/2 MAP kinase signal cascade were reverted by the cytohesin-1 E157K mutant, which is deficient in catalyzing guanine nucleotide exchange [27].
  • In the presence of DFMO, the HA-V14-RhoA cells lost stress fibers and gained the appearance of HA-N19-RhoA cells or wild-type cells treated with DFMO [28].

Gene context of Stress Fibers

  • We found that mutation of Tyr31/118 caused enhanced activation of RhoA and premature formation of stress fibers with substantial loss of efficient membrane spreading and ruffling in adhesion and migration of NMuMG cells [29].
  • We demonstrate that PDGF activates Cdc42 and its downstream effector N-WASP to mediate filopodia formation, actin stress fiber disassembly, and a reduction in focal adhesion complexes [30].
  • Interestingly, the simultaneous deletion of the H1 region is required for the localization of filamin-B at the tips of actin stress fibers [31].
  • In fibroblasts, VASP is concentrated at focal contact areas, along microfilament bundles (stress fibres) in a punctate pattern, in the periphery of protruding lamellae, and is phosphorylated by cGMP- and cAMP-dependent protein kinases in response to appropriate stimuli [32].
  • Importantly, the protrusions observed in cells transfected with ARF6 were distinct from the enhanced stress fibers and membrane ruffles observed in cells transfected with RhoA and Rac1, respectively [33].

Analytical, diagnostic and therapeutic context of Stress Fibers


  1. Behavior of cells seeded in isolated fibronectin matrices. Hsieh, P., Chen, L.B. J. Cell Biol. (1983) [Pubmed]
  2. Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. Geerts, D., Fontao, L., Nievers, M.G., Schaapveld, R.Q., Purkis, P.E., Wheeler, G.N., Lane, E.B., Leigh, I.M., Sonnenberg, A. J. Cell Biol. (1999) [Pubmed]
  3. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Oswald, E., Sugai, M., Labigne, A., Wu, H.C., Fiorentini, C., Boquet, P., O'Brien, A.D. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  4. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Horiguchi, Y., Inoue, N., Masuda, M., Kashimoto, T., Katahira, J., Sugimoto, N., Matsuda, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  5. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. Lavoie, J.N., Gingras-Breton, G., Tanguay, R.M., Landry, J. J. Biol. Chem. (1993) [Pubmed]
  6. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Honda, H., Oda, H., Nakamoto, T., Honda, Z., Sakai, R., Suzuki, T., Saito, T., Nakamura, K., Nakao, K., Ishikawa, T., Katsuki, M., Yazaki, Y., Hirai, H. Nat. Genet. (1998) [Pubmed]
  7. Rac mediates growth factor-induced arachidonic acid release. Peppelenbosch, M.P., Qiu, R.G., de Vries-Smits, A.M., Tertoolen, L.G., de Laat, S.W., McCormick, F., Hall, A., Symons, M.H., Bos, J.L. Cell (1995) [Pubmed]
  8. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Nobes, C.D., Hall, A. Cell (1995) [Pubmed]
  9. Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products. Peppelenbosch, M.P., Tertoolen, L.G., Hage, W.J., de Laat, S.W. Cell (1993) [Pubmed]
  10. Pasteurella multocida toxin, a potent intracellularly acting mitogen, induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. Lacerda, H.M., Lax, A.J., Rozengurt, E. J. Biol. Chem. (1996) [Pubmed]
  11. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Pelton, P.D., Sherman, L.S., Rizvi, T.A., Marchionni, M.A., Wood, P., Friedman, R.A., Ratner, N. Oncogene (1998) [Pubmed]
  12. Function of the small guanosine triphosphate-binding protein RhoA in the process of implantation. Shiokawa, S., Sakai, K., Akimoto, Y., Suzuki, N., Hanashi, H., Nagamatsu, S., Iwashita, M., Nakamura, Y., Hirano, H., Yoshimura, Y. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  13. Synthesis and cellular characterization of the detransformation agent, (-)-depudecin. Shimada, J., Kwon, H.J., Sawamura, M., Schreiber, S.L. Chem. Biol. (1995) [Pubmed]
  14. A synthetic peptide from the heparin-binding domain III (repeats III4-5) of fibronectin promotes stress-fibre and focal-adhesion formation in melanoma cells. Moyano, J.V., Maqueda, A., Albar, J.P., Garcia-Pardo, A. Biochem. J. (2003) [Pubmed]
  15. Production and characterization of an antibody to myosin light chain kinase and intracellular localization of the enzyme. Guerriero, V., Rowley, D.R., Means, A.R. Cell (1981) [Pubmed]
  16. Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Wang, X., Huang, D.Y., Huong, S.M., Huang, E.S. Nat. Med. (2005) [Pubmed]
  17. The control of cell motility and epithelial morphogenesis by Jun kinases. Xia, Y., Karin, M. Trends Cell Biol. (2004) [Pubmed]
  18. Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. Santos, M.F., McCormack, S.A., Guo, Z., Okolicany, J., Zheng, Y., Johnson, L.R., Tigyi, G. J. Clin. Invest. (1997) [Pubmed]
  19. Truncated, desensitization-defective neurokinin receptors mediate sustained MAP kinase activation, cell growth and transformation by a Ras-independent mechanism. Alblas, J., van Etten, I., Moolenaar, W.H. EMBO J. (1996) [Pubmed]
  20. Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Friederich, E., Huet, C., Arpin, M., Louvard, D. Cell (1989) [Pubmed]
  21. Stress fiber sarcomeres of fibroblasts are contractile. Kreis, T.E., Birchmeier, W. Cell (1980) [Pubmed]
  22. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Amano, M., Mukai, H., Ono, Y., Chihara, K., Matsui, T., Hamajima, Y., Okawa, K., Iwamatsu, A., Kaibuchi, K. Science (1996) [Pubmed]
  23. Actin filament stress fibers in vascular endothelial cells in vivo. Wong, A.J., Pollard, T.D., Herman, I.M. Science (1983) [Pubmed]
  24. Transformation-associated increase of adhesion, cellular fibronectin, and stress fiber development in a liver epithelial cell line. Junker, J.L., Cottler-Fox, M., Wilson, M.J., Munoz, E.F., Heine, U.I. J. Natl. Cancer Inst. (1985) [Pubmed]
  25. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Flatau, G., Lemichez, E., Gauthier, M., Chardin, P., Paris, S., Fiorentini, C., Boquet, P. Nature (1997) [Pubmed]
  26. Big G, little G: G proteins and actin cytoskeletal reorganization. Luttrell, L.M. Mol. Cell (2002) [Pubmed]
  27. Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Kliche, S., Nagel, W., Kremmer, E., Atzler, C., Ege, A., Knorr, T., Koszinowski, U., Kolanus, W., Haas, J. Mol. Cell (2001) [Pubmed]
  28. RhoA inactivation inhibits cell migration but does not mediate the effects of polyamine depletion. Ray, R.M., Patel, A., Viar, M.J., McCormack, S.A., Zheng, Y., Tigyi, G., Johnson, L.R. Gastroenterology (2002) [Pubmed]
  29. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. Tsubouchi, A., Sakakura, J., Yagi, R., Mazaki, Y., Schaefer, E., Yano, H., Sabe, H. J. Cell Biol. (2002) [Pubmed]
  30. Role of the PI3K regulatory subunit in the control of actin organization and cell migration. Jiménez, C., Portela, R.A., Mellado, M., Rodríguez-Frade, J.M., Collard, J., Serrano, A., Martínez-A, C., Avila, J., Carrera, A.C. J. Cell Biol. (2000) [Pubmed]
  31. Different splice variants of filamin-B affect myogenesis, subcellular distribution, and determine binding to integrin [beta] subunits. van der Flier, A., Kuikman, I., Kramer, D., Geerts, D., Kreft, M., Takafuta, T., Shapiro, S.S., Sonnenberg, A. J. Cell Biol. (2002) [Pubmed]
  32. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. Reinhard, M., Halbrügge, M., Scheer, U., Wiegand, C., Jockusch, B.M., Walter, U. EMBO J. (1992) [Pubmed]
  33. Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. Radhakrishna, H., Klausner, R.D., Donaldson, J.G. J. Cell Biol. (1996) [Pubmed]
  34. Microinjection of villin into cultured cells induces rapid and long-lasting changes in cell morphology but does not inhibit cytokinesis, cell motility, or membrane ruffling. Franck, Z., Footer, M., Bretscher, A. J. Cell Biol. (1990) [Pubmed]
  35. Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts. Singer, I.I. J. Cell Biol. (1982) [Pubmed]
  36. Phospholipase D activity is required for actin stress fiber formation in fibroblasts. Kam, Y., Exton, J.H. Mol. Cell. Biol. (2001) [Pubmed]
  37. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Lo, C.M., Buxton, D.B., Chua, G.C., Dembo, M., Adelstein, R.S., Wang, Y.L. Mol. Biol. Cell (2004) [Pubmed]
  38. Conditional expression of a truncated fragment of nonmuscle myosin II-A alters cell shape but not cytokinesis in HeLa cells. Wei, Q., Adelstein, R.S. Mol. Biol. Cell (2000) [Pubmed]
WikiGenes - Universities