The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Activation of PLC-delta1 by Gi/o-coupled receptor agonists.

The mechanism of phospholipase (PLC)-delta activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca(2+) stimulated an eightfold increase in PLC-delta1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three G(i/o)-coupled receptor agonists (somatostatin, delta-opioid agonist [D-Pen(2),D-Pen(5)]enkephalin, and A(1) agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-delta1(E341R/D343R; 65-76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca(2+) influx and was not observed in the absence of extracellular Ca(2+), but was partly inhibited by nifedipine (16-30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca(2+) channels. Treatment of the cells with a G(q/13)-coupled receptor agonist, CCK-8, caused only transient, PLC-beta1-mediated PI hydrolysis. Unlike G(i/o)-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-delta1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or Galpha(13) minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-delta1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca(2+) influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine ( approximately 25%) and strongly inhibited by SKF-96365 ( approximately 75%) and in cells expressing PLC-delta1(E341R/D343R). Agonist-independent Ca(2+) release or Ca(2+) influx via voltage-gated Ca(2+) channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-delta1 antibody or nifedipine. We conclude that PLC-delta1 is activated by G(i/o)-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca(2+) influx via store-operated Ca(2+) channels.[1]

References

  1. Activation of PLC-delta1 by Gi/o-coupled receptor agonists. Murthy, K.S., Zhou, H., Huang, J., Pentyala, S.N. Am. J. Physiol., Cell Physiol. (2004) [Pubmed]
 
WikiGenes - Universities