The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Alterations in expression of dopamine receptors and neuropeptides in the striatum of GTP cyclohydrolase-deficient mice.

The hph-1 mice have defective tetrahydrobiopterin biosynthesis and share many neurochemical similarities with l-dopa-responsive dystonia (DRD) in humans. In both, there are deficiencies in GTP cyclohydrolase I and low brain levels of dopamine (DA). Striatal tyrosine hydroxylase ( TH) levels are decreased while the number of DA neurones in substantia nigra (SN) appears normal. The hph-1 mouse is therefore a useful model in which to investigate the biochemical mechanisms underlying dystonia in DRD. In the present study, the density of striatal DA terminals and DA receptors and the expression of D-1, D-2, and D-3 receptors, preproenkephalin (PPE-A), preprotachykinin (PPT), and nitric oxide synthase (NOS) mRNAs in the striatum and nucleus accumbens and nigral TH mRNA expression were examined. Striatal DA terminal density as judged by specific [3H]mazindol binding was not altered while the levels of TH mRNA were elevated in the SN of hph-1 mice compared to control (C57BL) mice. Total and subregional analysis of the striatum and nucleus accumbens showed that D-2 receptor ([3H]spiperone) binding density was increased while D-1 receptor ([3H]SCH 23390) and D-3 receptor ([3H]7-OH-DPAT) binding density was not altered. In the striatum and nucleus accumbens, expression of PPT mRNA was elevated but PPE-A mRNA, D-1, D-2 receptor, and nNOS mRNA were not changed in hph-1 mice compared to controls. These findings suggest that an imbalance between the direct strionigral and indirect striopallidal output pathways may be relevant to the genesis of DRD. However, the pattern of changes observed is not that expected as a result of striatal dopamine deficiency and suggests that other effects of GTP cyclohydrolase I deficiency may be involved.[1]


  1. Alterations in expression of dopamine receptors and neuropeptides in the striatum of GTP cyclohydrolase-deficient mice. Zeng, B.Y., Heales, S.J., Canevari, L., Rose, S., Jenner, P. Exp. Neurol. (2004) [Pubmed]
WikiGenes - Universities