Fluctuations of intracellular iron modulate elastin production.
Production of insoluble elastin, the major component of elastic fibers, can be modulated by numerous intrinsic and exogenous factors. Because patients with hemolytic disorders characterized with fluctuations in iron concentration demonstrate defective elastic fibers, we speculated that iron might also modulate elastogenesis. In the present report we demonstrate that treatment of cultured human skin fibroblasts with low concentration of iron 2-20 microm (ferric ammonium citrate) induced a significant increase in the synthesis of tropoelastin and deposition of insoluble elastin. Northern blot and real-time reverse transcription-PCR analysis revealed that treatment with 20 microm iron led to an increase of approximately 3-fold in elastin mRNA levels. Because treatment with an intracellular iron chelator, desferrioxamine, caused a significant decrease in elastin mRNA level and consequent inhibition of elastin deposition, we conclude that iron facilitates elastin gene expression. Our experimental evidence also demonstrates the existence of an opposite effect, in which higher, but not cytotoxic concentrations of iron (100-400 microm) induced the production of intracellular reactive oxygen species that coincided with a significant decrease in elastin message stability and the disappearance of iron-dependent stimulatory effect on elastogenesis. This stimulatory elastogenic effect was reversed, however, in cultures simultaneously treated with high iron concentration (200 microm) and the intracellular hydroxyl radical scavenger, dimethylthiourea. Thus, presented data, for the first time, demonstrate the existence of two opposite iron-dependent mechanisms that may affect the steady state of elastin message. We speculate that extreme fluctuations in intracellular iron levels result in impaired elastic fiber production as observed in hemolytic diseases.[1]References
- Fluctuations of intracellular iron modulate elastin production. Bunda, S., Kaviani, N., Hinek, A. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg