Intrathecal clonidine inhibits mechanical allodynia via activation of the spinal muscarinic M1 receptor in streptozotocin-induced diabetic mice.
We examined the involvement of the spinal muscarinic receptors in the clonidine-induced antiallodynic effects. Mechanical sensitivity was assessed by stimulating the hind paw with von Frey filaments. In streptozotocin-treated (200 mg/kg, i.v.) diabetic mice, hypersensitivity to mechanical stimulation appeared 3 days after streptozotocin administration, and persisted for 11 days. This mechanical hypersensitivity (allodynia) was inhibited by the intrathecal (i.t.) injection of clonidine. The muscarinic receptor antagonist atropine (i.t.) and alpha2-adrenoreceptor antagonist yohimbine (i.t. or subcutaneous injection) abolished the antiallodynic effect of clonidine. The effect was mimicked by the muscarinic M1 receptor antagonist pirenzepine, but not by the muscarinic M2 receptor antagonist methoctoramine or the muscarinic M3 receptor antagonist 4-DAMP (4-diphenyl-acetoxy-N-methylpiperidine methiodide). In addition, the mechanical hypersensitivity in diabetic mice was reduced by the selective muscarinic M1 receptor agonist McN-A-343 (4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium chloride) (i.t.). These results suggest that spinal muscarinic M1 receptors participate in the antiallodynic effect of clonidine in diabetic mice.[1]References
- Intrathecal clonidine inhibits mechanical allodynia via activation of the spinal muscarinic M1 receptor in streptozotocin-induced diabetic mice. Koga, K., Honda, K., Ando, S., Harasawa, I., Kamiya, H.O., Takano, Y. Eur. J. Pharmacol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg