The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Redox sensitive cysteine residues in calbindin D28k are structurally and functionally important.

Human calbindin D(28k) is a Ca(2+) binding protein that has been implicated in the protection of cells against apoptosis. In this study, the structural and functional significance of the five cysteine residues present in this protein have been investigated through a series of cysteine-to-serine mutations. The mutants were studied under relevant physiological redox potentials in which conformational changes were monitored using ANS binding. Urea-induced denaturations, as monitored by intrinsic tryptophan fluorescence, were also carried out to compare their relative stability. It was shown that the two N-terminal cysteine residues undergo a redox-driven structural change consistent with disulfide bond formation. The other cysteine residues are not by themselves sufficient at inducing structural change, but they accentuate the disulfide-dependent conformational change in a redox-dependent manner. Mass spectrometry data show that the three C-terminal cysteine residues can be modified by glutathione. Furthermore, under oxidizing conditions, the data display additional species consistent with the conversion of cysteine thiols to sulfenic acids and disulfides to disulfide-S-monoxides. The biological function of calbindin D(28k) appears to be tied to the redox state of the cysteine residues. The two N-terminal cysteine residues are required for activation of myo-inositol monophosphatase, and enzyme activation is enhanced under conditions in which these residues are oxidized. Last, oxidized calbindin D(28k) binds Ca(2+) with lower affinity than does the reduced protein.[1]


  1. Redox sensitive cysteine residues in calbindin D28k are structurally and functionally important. Cedervall, T., Berggård, T., Borek, V., Thulin, E., Linse, S., Akerfeldt, K.S. Biochemistry (2005) [Pubmed]
WikiGenes - Universities