A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100.
Formation of the mature 3' ends of the vast majority of cellular mRNAs occurs through cleavage and polyadenylation and requires a cleavage and polyadenylation specificity factor (CPSF) containing, among other proteins, CPSF-73 and CPSF-100. These two proteins belong to a superfamily of zinc-dependent beta-lactamase fold proteins with catalytic specificity for a wide range of substrates including nucleic acids. CPSF-73 contains a zinc-binding histidine motif involved in catalysis in other members of the beta-lactamase superfamily, whereas CPSF-100 has substitutions within the histidine motif and thus is unlikely to be catalytically active. Here we describe two previously unknown human proteins, designated RC-68 and RC-74, which are related to CPSF-73 and CPSF-100 and which form a complex in HeLa and mouse cells. RC-68 contains the intact histidine motif, and hence it might be a functional counterpart of CPSF-73, whereas RC-74 lacks this motif, thus resembling CPSF-100. In HeLa cells RC-68 is present in both the cytoplasm and the nucleus whereas RC-74 is exclusively nuclear. RC-74 does not interact with CPSF-73, and neither RC-68 nor RC-74 is found in a complex with CPSF-160, indicating that these two proteins form a separate entity independent of the CPSF complex and are likely involved in a pre-mRNA processing event other than cleavage and polyadenylation of the vast majority of cellular pre-mRNAs. RNA interference-mediated depletion of RC-68 arrests HeLa cells early in G(1) phase, but surprisingly the arrested cells continue growing and reach the size typical of G(2) cells. RC-68 is highly conserved from plants to humans and may function in conjunction with RC-74 in the 3' end processing of a distinct subset of cellular pre-mRNAs encoding proteins required for G(1) progression and entry into S phase.[1]References
- A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Dominski, Z., Yang, X.C., Purdy, M., Wagner, E.J., Marzluff, W.F. Mol. Cell. Biol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg