The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Expression of various scinderin domains in chromaffin cells indicates that this protein acts as a molecular switch in the control of actin filament dynamics and exocytosis.

Stimulation-induced chromaffin cell cortical F-actin disassembly allows the movement of vesicles towards exocytotic sites. Scinderin ( Sc), a Ca2+-dependent protein, controls actin dynamics. Sc six domains have three actin, two PIP2 and two Ca2+-binding sites. F-actin severing activity of Sc is Ca2+-dependent, whereas Sc-evoked actin nucleation is Ca2+-independent. Sc domain role in secretion was studied by co-transfection of human growth hormone ( hGH) reporter gene and green fluorescent protein (GFP)-fusion Sc constructs. Cells over-expressing actin severing Sc1-6 or Sc1-2 (first and second actin binding sites) constructs, increased F-actin disassembly and hGH release upon depolarization. Over-expression of nucleating Sc5-6, Sc5 or ScABP3 (third actin site) constructs decreased F-actin disassembly and hGH release upon stimulation. Over-expression of ScL5-6 or ScL5 (lack of third actin site) produced no changes. During secretion, actin sites 1 and 2 are involved in F-actin severing, whereas site 3 is responsible for nucleation (polymerization). Sc functions as a molecular switch in the control of actin (disassembly left arrow over right arrow assembly) and release (facilitation left arrow over right arrow inhibition). The position of the switch (severing left arrow over right arrow nucleation) may be controlled by [Ca2+]i. Thus, increase in [Ca2+]i produced by stimulation-induced Ca2+ entry would increase Sc-evoked cortical F-actin disassembly. Decrease in [Ca2+]i by either organelle sequestration or cell extrusion would favor Sc-evoked actin nucleation.[1]

References

 
WikiGenes - Universities