The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The stimulatory role of human cytochrome b5 in the bioactivation activities of human CYP1A2, 2A6 and 2E1: a new cell expression system to study cytochrome P450 mediated biotransformation.

Cytochrome b(5) (b(5)) is increasingly recognized to be of importance for specific cytochrome P450 ( CYP) activities. We developed human b(5)/CYP-competent mutagenicity tester bacteria to study the role of b(5) in the bioactivation activity of human CYP. These new tester bacteria were derived from the previously engineered human CYP-competent Escherichia coli K12 tester strain MTC, containing a bi-plasmid system for the co-expression of a specific CYP form (CYP1A2, 2A6 or 2E1) with human b(5), and human NADPH cytochrome P450 reductase (RED), resulting in the strain BTC-b(5)-1A2, BTC-b(5)-2A6 and BTC-b(5)-2E1, respectively. The relative content of b(5) with CYP and RED in these three BTC-b(5)-CYP strains demonstrated physiologically relevant co-expression levels and typical CYP-specific activities could be determined with their specific chemical probes. These strains were applied in mutagenicity assays along with their corresponding b(5)-void strains to determine the effect of b(5) on the CYP1A2-, CYP2A6- and CYP2E1-mediated bioactivation of several promutagens. For CYP1A2, of the 5 compounds tested [2-aminoanthracene (2AA), 1-aminopyrene, 6-aminochrysene, 2-amino-3-methylimidazo(4,5-f)quinoline and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)], only the mutagenicity of 2AA was slightly increased ( approximately 1.5-fold) in the presence of b(5). The CYP2E1- and CYP2A6-dependent mutagenicity of N-nitrosodiethylamine increased approximately 3- and 23-fold, respectively when the bacteria contained b(5). The CYP2A6-mediated mutagenicity of NNK increased approximately 9-fold when co-expressed with b(5). The stimulatory effect of b(5) on the bioactivation of N-nitrosodi-n-propylamine was most striking. The mutagenicity of this procarcinogen was completely dependent on the co-expression of b(5) with CYP2A6 or CYP2E1. This demonstrates the prominent role of b(5) in the bioactivation of this carcinogen.[1]

References

  1. The stimulatory role of human cytochrome b5 in the bioactivation activities of human CYP1A2, 2A6 and 2E1: a new cell expression system to study cytochrome P450 mediated biotransformation. Duarte, M.P., Palma, B.B., Gilep, A.A., Laires, A., Oliveira, J.S., Usanov, S.A., Rueff, J., Kranendonk, M. Mutagenesis (2005) [Pubmed]
 
WikiGenes - Universities