Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis.
The toxicity of aromatics frequently limits the yields of their microbial synthesis. For example, the 5% yield of catechol synthesized from glucose by Escherichia coli WN1/pWL1.290A under fermentor-controlled conditions reflects catechol's microbial toxicity. Use of in situ resin-based extraction to reduce catechol's concentration in culture medium and thereby its microbial toxicity during its synthesis from glucose by E. coli WN1/pWL1.290A led to a 7% yield of catechol. Interfacing microbial with chemical synthesis was then explored where glucose was microbially converted into a nontoxic intermediate followed by chemical conversion of this intermediate into catechol. Intermediates examined include 3-dehydroquinate, 3-dehydroshikimate, and protocatechuate. 3-Dehydroquinate and 3-dehydroshikimate synthesized, respectively, by E. coli QP1.1/pJY1.216A and E. coli KL3/pJY1.216A from glucose were extracted and then reacted in water heated at 290 degrees C to afford catechol in overall yields from glucose of 10% and 26%, respectively. The problematic extraction of these catechol precursors from culture medium was subsequently circumvented by high-yielding chemical dehydration of 3-dehydroquinate and 3-dehydroshikimate in culture medium followed by extraction of the resulting protocatechuate. After reaction of protocatechuate in water heated at 290 degrees C, the overall yields of catechol synthesized from glucose via chemical dehydration of 3-dehydroquinate and chemical dehydration of 3-dehydroshikimate were, respectively, 25% and 30%. Direct synthesis of protocatechuate from glucose using E. coli KL3/pWL2.46B followed by its extraction and chemical decarboxylation in water gave a 24% overall yield of catechol from glucose. In situ resin-based extraction of protocatechaute synthesized by E. coli KL3/pWL2.46B followed by chemical decarboxylation of this catechol percursor was then examined. This employment of both strategies for dealing with the microbial toxicity of aromatic products led to the highest overall yield with catechol synthesized in 43% overall yield from glucose.[1]References
- Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis. Li, W., Xie, D., Frost, J.W. J. Am. Chem. Soc. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg