The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

b-Resorcylate     3,4-dihydroxybenzoic acid

Synonyms: CHEMBL37537, SureCN39435, CCRIS 6291, AG-A-47655, ACMC-209scu, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC16631

  • Pseudomonas testosteroni protocatechuate 4,5-dioxygenase catalyzes extradiol-type oxygenolytic cleavage of the aromatic ring of its substrate [1].
  • A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6 [2].
  • A protocatechuate 3,4-dioxygenase with exceptionally sharp spectral features and a new subunit composition has been purified and crystallized from the Gram-positive organism Brevibacterium fuscum [3].
  • Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol [4].
  • X-ray quality single crystals of protocatechuate 3,4-dioxygenase from Acinetobacter calcoaceticus were obtained by the hanging drop method [5].
 

High impact information on NSC16631

  • The modifying effects of three doses of dietary protocatechuic acid (PCA) given the initiation and postinitiation phases of oral carcinogenesis initiated with 4-nitroquinoline 1-oxide (4-NQO) were investigated in male F344 rats [6].
  • Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary protocatechuic acid during initiation and postinitiation phases [6].
  • Thirteen crystal structures of substrate and substrate analog complexes of protocatechuate 3, 4-dioxygenase have revealed intimate details about changes at the enzyme active site during catalysis [7].
  • The active site Fe3+ of protocatechuate (PCA) 3,4-dioxygenase can be nonenzymatically reduced to Fe2+, to give a colorless and EPR-silent enzyme (Er) [8].
  • [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases [9].
 

Chemical compound and disease context of NSC16631

 

Biological context of NSC16631

 

Anatomical context of NSC16631

 

Associations of NSC16631 with other chemical compounds

 

Gene context of NSC16631

  • In an appropriate genetic background, it is possible to select for Acinetobacter strains containing spontaneous mutations blocking expression of pcaH or -G, genes encoding the alpha and beta subunits of protocatechuate 3, 4-dioxygenase [29].
  • In this investigation, DNA from pobS to an XbaI site 5.3 kb beyond hcaC was captured in the plasmid pZR8200 by a strategy that involved in vivo integration of a cloning vector near the hca region of the chromosome. pZR8200 enabled Escherichia coli to convert p-coumarate to protocatechuate in vivo [30].
  • Inactivation of pcaU reduced the induced expression of pca structural genes by about 90% and impeded but did not completely prevent growth of the mutant cells with protocatechuate [31].
  • Furthermore, vanK pcaK double-knockout mutants appear completely unable to grow in liquid culture with the hydroaromatic compound quinate, although such cells on plates convert quinate to protocatechuate, which then accumulates extracellularly and is readily visible as purple staining [32].
  • The PCR process using degenerate primers for protocatechuate 3,4-dioxygenase and sequence analyses of the PCR products revealed the existence of pcaH and pcaG in A. lwoffii K24 [33].
 

Analytical, diagnostic and therapeutic context of NSC16631

References

  1. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. Arciero, D.M., Lipscomb, J.D. J. Biol. Chem. (1986) [Pubmed]
  2. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. Nogales, J., Canales, A., Jiménez-Barbero, J., García, J.L., Díaz, E. J. Biol. Chem. (2005) [Pubmed]
  3. Brevibacterium fuscum protocatechuate 3,4-dioxygenase. Purification, crystallization, and characterization. Whittaker, J.W., Lipscomb, J.D., Kent, T.A., Münck, E. J. Biol. Chem. (1984) [Pubmed]
  4. Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Contzen, M., Bürger, S., Stolz, A. Mol. Microbiol. (2001) [Pubmed]
  5. Crystallization and preliminary X-ray analysis of protocatechuate 3,4-dioxygenase from Acinetobacter calcoaceticus. Vetting, M.W., Earhart, C.A., Ohlendorf, D.H. J. Mol. Biol. (1994) [Pubmed]
  6. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary protocatechuic acid during initiation and postinitiation phases. Tanaka, T., Kawamori, T., Ohnishi, M., Okamoto, K., Mori, H., Hara, A. Cancer Res. (1994) [Pubmed]
  7. Oxygen activating nonheme iron enzymes. Lange, S.J., Que, L. Current opinion in chemical biology. (1998) [Pubmed]
  8. Simultaneous binding of nitric oxide and isotopically labeled substrates or inhibitors by reduced protocatechuate 3,4-dioxygenase. Orville, A.M., Lipscomb, J.D. J. Biol. Chem. (1993) [Pubmed]
  9. [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases. Arciero, D.M., Orville, A.M., Lipscomb, J.D. J. Biol. Chem. (1985) [Pubmed]
  10. Transition state analogs for protocatechuate 3,4-dioxygenase. Spectroscopic and kinetic studies of the binding reactions of ketonized substrate analogs. Whittaker, J.W., Lipscomb, J.D. J. Biol. Chem. (1984) [Pubmed]
  11. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. Cunane, L.M., Chen, Z.W., Shamala, N., Mathews, F.S., Cronin, C.N., McIntire, W.S. J. Mol. Biol. (2000) [Pubmed]
  12. Elevated "hydroxyl radical" generation in vivo in an animal model of amyotrophic lateral sclerosis. Bogdanov, M.B., Ramos, L.E., Xu, Z., Beal, M.F. J. Neurochem. (1998) [Pubmed]
  13. 4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Locher, H.H., Leisinger, T., Cook, A.M. Biochem. J. (1991) [Pubmed]
  14. Specific inhibition of a family 1A dihydroorotate dehydrogenase by benzoate pyrimidine analogues. Palfey, B.A., Björnberg, O., Jensen, K.F. J. Med. Chem. (2001) [Pubmed]
  15. Binding of isotopically labeled substrates, inhibitors, and cyanide by protocatechuate 3,4-dioxygenase. Orville, A.M., Lipscomb, J.D. J. Biol. Chem. (1989) [Pubmed]
  16. Characterization of MobR, the 3-Hydroxybenzoate-responsive Transcriptional Regulator for the 3-Hydroxybenzoate Hydroxylase Gene of Comamonas testosteroni KH122-3s. Hiromoto, T., Matsue, H., Yoshida, M., Tanaka, T., Higashibata, H., Hosokawa, K., Yamaguchi, H., Fujiwara, S. J. Mol. Biol. (2006) [Pubmed]
  17. A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. Nakamura, Y., Torikai, K., Ohto, Y., Murakami, A., Tanaka, T., Ohigashi, H. Carcinogenesis (2000) [Pubmed]
  18. Inhibition of prolyl hydroxylation during collagen biosynthesis in human skin fibroblast cultures by ethyl 3,4-dihydroxybenzoate. Majamaa, K., Sasaki, T., Uitto, J. J. Invest. Dermatol. (1987) [Pubmed]
  19. Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Durham, D.R., Stirling, L.A., Ornston, L.N., Perry, J.J. Biochemistry (1980) [Pubmed]
  20. Inhibition of collagen hydroxylation by 2,7,8-trihydroxyanthraquinone in embryonic-chick tendon cells. Franklin, T.J., Hitchen, M. Biochem. J. (1989) [Pubmed]
  21. Activation of catechol-O-methyltransferase in astrocytes stimulates homocysteine synthesis and export to neurons. Huang, G., Dragan, M., Freeman, D., Wilson, J.X. Glia (2005) [Pubmed]
  22. Inhibition of rat liver and duodenum soluble catechol-O-methyltransferase by a tight-binding inhibitor OR-462. Schultz, E., Nissinen, E. Biochem. Pharmacol. (1989) [Pubmed]
  23. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Shui Guan, n.u.l.l., Bao, Y.M., Bo Jiang, n.u.l.l., An, L.J. Eur. J. Pharmacol. (2006) [Pubmed]
  24. Schistosomicidal activities of Lymnaea stagnalis haemocytes: the role of oxygen radicals. Adema, C.M., van Deutekom-Mulder, E.C., van der Knaap, W.P., Sminia, T. Parasitology (1994) [Pubmed]
  25. Chemoprevention of colon carcinogenesis by the natural product of a simple phenolic compound protocatechuic acid: suppressing effects on tumor development and biomarkers expression of colon tumorigenesis. Tanaka, T., Kojima, T., Suzui, M., Mori, H. Cancer Res. (1993) [Pubmed]
  26. Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease. Bogdanov, M.B., Ferrante, R.J., Kuemmerle, S., Klivenyi, P., Beal, M.F. J. Neurochem. (1998) [Pubmed]
  27. Studies on the meta and para O-sulphation of the catechol compound 3,4-dihydroxybenzoic acid by rat liver sulphotransferase in vitro. Pennings, E.J., Van Kempen, G.M. Biochem. J. (1980) [Pubmed]
  28. Selective overexpression of the QUTE gene encoding catabolic 3-dehydroquinase in multicopy transformants of Aspergillus nidulans. Beri, R.K., Grant, S., Roberts, C.F., Smith, M., Hawkins, A.R. Biochem. J. (1990) [Pubmed]
  29. Substitution, insertion, deletion, suppression, and altered substrate specificity in functional protocatechuate 3,4-dioxygenases. D'Argenio, D.A., Vetting, M.W., Ohlendorf, D.H., Ornston, L.N. J. Bacteriol. (1999) [Pubmed]
  30. Hydroxycinnamate (hca) catabolic genes from Acinetobacter sp. strain ADP1 are repressed by HcaR and are induced by hydroxycinnamoyl-coenzyme A thioesters. Parke, D., Ornston, L.N. Appl. Environ. Microbiol. (2003) [Pubmed]
  31. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. Gerischer, U., Segura, A., Ornston, L.N. J. Bacteriol. (1998) [Pubmed]
  32. The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. D'Argenio, D.A., Segura, A., Coco, W.M., Bünz, P.V., Ornston, L.N. J. Bacteriol. (1999) [Pubmed]
  33. Enhanced detection and characterization of protocatechuate 3,4-dioxygenase in Acinetobacter lwoffii K24 by proteomics using a column separation. Kahng, H.Y., Cho, K., Song, S.Y., Kim, S.J., Leem, S.H., Kim, S.I. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  34. Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. A new iron to subunit stoichiometry. Bull, C., Ballou, D.P. J. Biol. Chem. (1981) [Pubmed]
  35. 17O-water and cyanide ligation by the active site iron of protocatechuate 3,4-dioxygenase. Evidence for displaceable ligands in the native enzyme and in complexes with inhibitors or transition state analogs. Whittaker, J.W., Lipscomb, J.D. J. Biol. Chem. (1984) [Pubmed]
  36. Spectroscopic and electronic structure studies of protocatechuate 3,4-dioxygenase: nature of tyrosinate-Fe(III) bonds and their contribution to reactivity. Davis, M.I., Orville, A.M., Neese, F., Zaleski, J.M., Lipscomb, J.D., Solomon, E.I. J. Am. Chem. Soc. (2002) [Pubmed]
 
WikiGenes - Universities