The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model.

The overexpression of the epidermal growth factor receptor (EGFR) is associated with a poor prognosis in ovarian cancer. The dominant-negative EGFR (EGFR-DNR) is a truncated receptor that lacks the tyrosine kinase domain and is devoid of signaling capability. This study tested the effects of a EGFR-DNR approach in ovarian cancer cells. NuTu-19, a rat ovarian cancer cell line was rendered resistant to cisplatin. Both NuTu-19 and resistant cells were infected with a retroviral vector containing the EGFR-DNR. NuTu-19 and NuTu-DNR (NuTu-19 cells expressing the EGFR-DNR) were injected into Fisher 344 immunocompetent rats. Western blot analyses were used to assess signal transduction pathways. All rats injected with NuTu-DNR cells remained healthy following tumor injection. In contrast, 100% of the rats injected with the NuTu-19 and NuTu-Sham (NuTu-19 cells expressing an empty vector) died of disease progression at the end of 15 weeks (P = 0.00009). On Western blot analysis, both NuTu-19 and NuTu-Sham cells showed a strong activation of mitogen-activated protein kinase ( MAPK) after exposure to EGF. Cisplatin-resistant cell lines showed an enhanced EGF stimulatory effect via the MAPK pathway compared with parental cells. The EGFR-DNR significantly reduced the ability of EGF to induce cell signaling through the MAPK pathway. Lastly, the EGFR-DNR can partially reverse cisplatin resistance in drug-resistant cells. The EGFR-DNR approach suggests that EGFR confers a growth advantage to NuTu-19 cells in vivo. Thus, EGFR blockade may ultimately prove to be a useful therapeutic tool in the treatment of cisplatin-sensitive and cisplatin-resistant ovarian cancers.[1]

References

  1. Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model. Chan, J.K., Pham, H., You, X.J., Cloven, N.G., Burger, R.A., Rose, G.S., Van Nostrand, K., Korc, M., Disaia, P.J., Fan, H. Cancer Res. (2005) [Pubmed]
 
WikiGenes - Universities