The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Purification and characterization of dipeptidyl peptidase I from human spleen.

The lysosomal hydrolase, dipeptidyl peptidase I (DPPI), was purified from human spleen and its enzymatic activity characterized. The enzyme was purified to apparent homogeneity by a combination of differential pH solubility, heat-treatment, affinity chromatography on concanavalin A-agarose and p-hydroxymercuribenzoate-agarose, and gel filtration chromatography on Sephacryl S-300. This procedure resulted in a 1100-fold purification of DPPI protein with a yield of approximately 2% of the total DPPI activity. The enzyme was characterized as a glycoprotein with a pI of 5.4, a molecular mass of 200,000 Da as determined by gel filtration under nondenaturing conditions, and a subunit size of 24,000 Da. Amino acid sequence analysis of peptides isolated from cyanogen bromide and trypsin digests of the 24,000-Da subunit revealed extensive sequence similarity between human and rat DPPI. Purified DPPI exhibited both hydrolytic and transpeptidase (polymerase) activity. DPPI exhibited activity against a variety of dipeptide substrates including peptides with either non-polar or polar residues in the P1 position. In contrast to the reported substrate specificity of bovine and murine DPPI, the human enzyme exhibited a modest preference for peptides with nonpolar residues in the P1 position. DPPI content was found to be highest among cytotoxic lymphocytes and myeloid cells. The high level of DPPI expression in these cell populations correlates with their sensitivity to the toxic effects of leucyl-leucine methyl ester, a substrate for DPPI.[1]


  1. Purification and characterization of dipeptidyl peptidase I from human spleen. McGuire, M.J., Lipsky, P.E., Thiele, D.L. Arch. Biochem. Biophys. (1992) [Pubmed]
WikiGenes - Universities