The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nuclear type II [3H]estradiol binding sites: a histone H3- H4 complex.

[(3)H]luteolin covalently labels two forms (11kDa and 35kDa proteins) of type II binding sites in rat uterine nuclear extracts [K. Shoulars, T. Brown, M. Alejandro, J. Crowley, B. Markaverich, Identification of rat uterine nuclear type II [(3)H]estradiol binding sites as histone H4, Biochem. Biophys. Res. Commun. 296 (2002) 1083-1090]. The 11kDa protein was identified as histone H4. Levels of the 35kDa protein were insufficient for sequencing; however, this protein was recognized by anti-histone H4 antibodies. Histones H3 and H4 exist as dimers in vivo (mw>>35kDa) and we suspected the 35kDa [(3)H]luteolin-labeled protein in uterine nuclear extracts might be a complex of histones H3 and H4. This manuscript describes methods for the purification of commercially available calf thymus core histones that retain [(3)H]luteolin binding activity and are of sufficient purity for recombination studies. Mixing experiments with pure H3 and H4 from calf thymus demonstrate that a 35kDa H3- H4 dimer capable of binding [(3)H]luteolin is generated and this protein appears equivalent to the 35kDa [(3)H]luteolin binding protein in rat uterine nuclear extracts. If this is the case, type II site ligands including MeHPLA, luteolin, and other bioflavonoids and phytoestrogens may control histone-dependent gene transcription and cellular proliferation via binding to and modulating core histone/nucleosome function.[1]

References

  1. Nuclear type II [3H]estradiol binding sites: a histone H3-H4 complex. Shoulars, K., Rodrigues, M.A., Crowley, J.R., Turk, J., Thompson, T., Markaverich, B.M. J. Steroid Biochem. Mol. Biol. (2005) [Pubmed]
 
WikiGenes - Universities