The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Localization-independent regulation of homocysteine secretion by phosphatidylethanolamine N-methyltransferase.

Genetic ablation of phosphatidylethanolamine N-methyltransferase (PEMT) in mice causes a 50% reduction in plasma homocysteine (Hcy) levels. Because hyperhomocysteinemia is an independent risk factor for cardiovascular disease, resolution of the molecular basis for this reduction is of significant clinical interest. The PEMT pathway is a metabolically channeled process localized to the endoplasmic reticulum (ER). To assess the importance of PEMT localization for Hcy homeostasis, we identified and ablated the minimal ER targeting motif. Mutagenesis of a conserved, C-terminal lysine residue (197) relocalized the enzyme to the Golgi, demonstrating that Lys-197 is essential for targeting PEMT to the ER. To evaluate the functional significance of PEMT localization, hepatoma cell lines were generated that stably expressed either ER- or Golgi-localized PEMT only. Intriguingly, stable expression of PEMT in either the ER or the Golgi caused increased Hcy secretion. Moreover, PEMT-mediated Hcy secretion correlated with the methyltransferase activity of the enzyme, independently of subcellular localization. Thus, our data suggest that Hcy homeostasis is regulated concomitantly with PEMT activity but independently of PEMT localization.[1]

References

  1. Localization-independent regulation of homocysteine secretion by phosphatidylethanolamine N-methyltransferase. Shields, D.J., Lingrell, S., Agellon, L.B., Brosnan, J.T., Vance, D.E. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities