MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes.
Despite a lack of signaling motifs in their cytoplasmic domain, major histocompatibility complex (MHC) class II molecules trigger a variety of intracellular signals that regulate antigen-presenting cell function. They thus may use associated effector molecules as demonstrated on B cells and dendritic cells. The starting point of this study comes from our previous work, which demonstrated that the ecto-enzyme CD38 is functionally linked to MHC class II molecules. We report that CD38 and human leukocyte antigen-DR (HLA-DR) are functionally and physically associated in lipid rafts microdomains of cellsurface monocytes and that the integrity of these domains is necessary for the HLA-DR and CD38 signaling events. Moreover, we identified the tetraspanin CD9 molecule as a partner of the CD38/HLA-DR complex and demonstrated that HLA-DR, CD38, and CD9 share a common pathway of tyrosine kinase activation in human monocytes. The analysis of conjugate formation between monocytes presenting superantigen and T cells shows the active participation of CD9 and HLA-DR on the monocyte surface. Together, these observations demonstrate the presence of a CD38 and HLA-DR signaling complex within tetraspanin-containing lipid rafts and the functional impact of their molecular partner CD9 in antigen presentation.[1]References
- MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Zilber, M.T., Setterblad, N., Vasselon, T., Doliger, C., Charron, D., Mooney, N., Gelin, C. Blood (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg