The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice.

Accumulating evidence indicates that glial cells are actively involved in the pathogenesis of Alzheimer's disease. We recently reported protective effects of long-term administration of ferulic acid against learning and memory deficit induced by centrally administered beta-amyloid peptide (Abeta)1-42 in mice. In that report, we found that the Abeta1-42-induced increases in immunoreactivities of glial fibrillary acidic protein, the astrocyte marker, and interleukin(IL)-1beta in the hippocampus are also suppressed by pretreatment with ferulic acid. In the present study, we aimed to further characterize the effect of long-term administration of ferulic acid on the centrally administered Abeta1-42-induced activation of glial cells in mice. Mice were allowed free access to drinking water (control) or water containing ferulic acid (0.006%) for 4 weeks, and then Abeta1-42 (410 pmol) was administered via intracerebroventricular injection. Intracerebroventricularly injected Abeta1-42 induced an increase in immunoreactivities of endothelial nitric oxide synthase (eNOS) and 3-nitrotyrosine (3-NT) in the activated astrocytes in the hippocampus. Pretreatment of ferulic acid for 4 weeks prevented the Abeta1-42-induced increase in eNOS and 3-NT immunoreactivities. Administration of ferulic acid per se induced a transient and slight increase in eNOS immunoreactivity in the hippocampus on day 14, which returned to basal levels on day 28. Intracerebroventricularly injected Abeta1-42 also increased interleukin-1alpha(IL-1alpha) immunoreactivity in the hippocampus, which was also suppressed by pretreatment with ferulic acid. These results demonstrate that long-term administration of ferulic acid induces suppression of the centrallly injected Abeta1-42-induced activation of astrocytes which is suggested to underlie the protective effect of ferulic acid against Abeta1-42 toxicity in vivo.[1]

References

  1. Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Cho, J.Y., Kim, H.S., Kim, D.H., Yan, J.J., Suh, H.W., Song, D.K. Prog. Neuropsychopharmacol. Biol. Psychiatry (2005) [Pubmed]
 
WikiGenes - Universities