The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Memory Disorders

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Memory Disorders

 

Psychiatry related information on Memory Disorders

 

High impact information on Memory Disorders

  • A mouse model for the learning and memory deficits associated with neurofibromatosis type I [11].
  • METHODS: In a prospective study, we evaluated 2108 patients from 24 U.S. institutions for two general categories of neurologic outcome: type I (focal injury, or stupor or coma at discharge) and type II (deterioration in intellectual function, memory deficit, or seizures) [12].
  • Prolonged intake of ethanol in rodents similarly produces signs of noradrenergic and cholinergic deafferentation in the cortex and hippocampus, as well as persistent memory deficits [13].
  • Humans with pharmacological and brain lesion-induced suppression of REM sleep do not show memory deficits, and other human sleep-learning studies have not produced consistent results [14].
  • Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation [15].
 

Chemical compound and disease context of Memory Disorders

 

Biological context of Memory Disorders

 

Anatomical context of Memory Disorders

 

Gene context of Memory Disorders

  • Here we show that BACE1 null mice engineered to overexpress human APP (BACE1(-/-).Tg2576(+)) are rescued from Abeta-dependent hippocampal memory deficits [31].
  • 129S6 mice are resistant to the lethal effects of APP overexpression, allowing sufficient levels of Abeta expression for the development of amyloid plaques and age-dependent memory deficits [32].
  • PS1 mice exhibited a similar degree of neuronal loss in CA1 but minimal memory deficit and no impairment of glucose utilization compared to nTg mice [33].
  • The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits [34].
  • Here, we applied trace fear conditioning to two different Alzheimer's mouse models and investigated the relationship between pathogenic Abeta and temporal memory deficits [35].
 

Analytical, diagnostic and therapeutic context of Memory Disorders

References

  1. Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. Teitelbaum, J.S., Zatorre, R.J., Carpenter, S., Gendron, D., Evans, A.C., Gjedde, A., Cashman, N.R. N. Engl. J. Med. (1990) [Pubmed]
  2. Spatial memory deficits, increased phosphorylation of the transcription factor CREB, and induction of the AP-1 complex following experimental brain injury. Dash, P.K., Moore, A.N., Dixon, C.E. J. Neurosci. (1995) [Pubmed]
  3. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. Arnsten, A.F., Cai, J.X., Goldman-Rakic, P.S. J. Neurosci. (1988) [Pubmed]
  4. Learning and memory deficits in Notch mutant mice. Costa, R.M., Honjo, T., Silva, A.J. Curr. Biol. (2003) [Pubmed]
  5. Sensory neuropathy associated with Dursban (chlorpyrifos) exposure. Kaplan, J.G., Kessler, J., Rosenberg, N., Pack, D., Schaumburg, H.H. Neurology (1993) [Pubmed]
  6. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Saura, C.A., Choi, S.Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B.S., Chattarji, S., Kelleher, R.J., Kandel, E.R., Duff, K., Kirkwood, A., Shen, J. Neuron (2004) [Pubmed]
  7. The temporal relationship between depressive symptoms and dementia: a community-based prospective study. Chen, P., Ganguli, M., Mulsant, B.H., DeKosky, S.T. Arch. Gen. Psychiatry (1999) [Pubmed]
  8. AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Albiston, A.L., Mustafa, T., McDowall, S.G., Mendelsohn, F.A., Lee, J., Chai, S.Y. Trends Endocrinol. Metab. (2003) [Pubmed]
  9. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Vermetten, E., Vythilingam, M., Southwick, S.M., Charney, D.S., Bremner, J.D. Biol. Psychiatry (2003) [Pubmed]
  10. Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson's disease. Lewis, S.J., Slabosz, A., Robbins, T.W., Barker, R.A., Owen, A.M. Neuropsychologia. (2005) [Pubmed]
  11. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Silva, A.J., Frankland, P.W., Marowitz, Z., Friedman, E., Laszlo, G.S., Cioffi, D., Jacks, T., Bourtchuladze, R., Lazlo, G. Nat. Genet. (1997) [Pubmed]
  12. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. Roach, G.W., Kanchuger, M., Mangano, C.M., Newman, M., Nussmeier, N., Wolman, R., Aggarwal, A., Marschall, K., Graham, S.H., Ley, C. N. Engl. J. Med. (1996) [Pubmed]
  13. Cholinergic-rich brain transplants reverse alcohol-induced memory deficits. Arendt, T., Allen, Y., Sinden, J., Schugens, M.M., Marchbanks, R.M., Lantos, P.L., Gray, J.A. Nature (1988) [Pubmed]
  14. The REM sleep-memory consolidation hypothesis. Siegel, J.M. Science (2001) [Pubmed]
  15. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Castner, S.A., Williams, G.V., Goldman-Rakic, P.S. Science (2000) [Pubmed]
  16. Prenatal exposure to carbon monoxide: learning and memory deficits. Mactutus, C.F., Fechter, L.D. Science (1984) [Pubmed]
  17. Aspartame and memory loss. Moser, R.H. JAMA (1994) [Pubmed]
  18. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Lupien, S.J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N.P., Thakur, M., McEwen, B.S., Hauger, R.L., Meaney, M.J. Nat. Neurosci. (1998) [Pubmed]
  19. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. Gong, B., Vitolo, O.V., Trinchese, F., Liu, S., Shelanski, M., Arancio, O. J. Clin. Invest. (2004) [Pubmed]
  20. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Gais, S., Born, J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  21. Regulation of CRE-dependent transcription by presenilins: prospects for therapy of Alzheimer's disease. Beglopoulos, V., Shen, J. Trends Pharmacol. Sci. (2006) [Pubmed]
  22. Influence of apolipoprotein E genotype on the transmission of Alzheimer disease in a community-based sample. Jarvik, G., Larson, E.B., Goddard, K., Schellenberg, G.D., Wijsman, E.M. Am. J. Hum. Genet. (1996) [Pubmed]
  23. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Li, W., Cui, Y., Kushner, S.A., Brown, R.A., Jentsch, J.D., Frankland, P.W., Cannon, T.D., Silva, A.J. Curr. Biol. (2005) [Pubmed]
  24. Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase. Szeltner, Z., Rea, D., Juhász, T., Renner, V., Mucsi, Z., Orosz, G., Fülöp, V., Polgár, L. J. Biol. Chem. (2002) [Pubmed]
  25. Long-term melatonin or 17beta-estradiol supplementation alleviates oxidative stress in ovariectomized adult rats. Feng, Z., Zhang, J.T. Free Radic. Biol. Med. (2005) [Pubmed]
  26. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Ito, E., Oka, K., Etcheberrigaray, R., Nelson, T.J., McPhie, D.L., Tofel-Grehl, B., Gibson, G.E., Alkon, D.L. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  27. Functional basis of memory impairment in multiple sclerosis: a[18F]FDG PET study. Paulesu, E., Perani, D., Fazio, F., Comi, G., Pozzilli, C., Martinelli, V., Filippi, M., Bettinardi, V., Sirabian, G., Passafiume, D., Anzini, A., Lenzi, G.L., Canal, N., Fieschi, C. Neuroimage (1996) [Pubmed]
  28. Plasma and red blood cell thiamine deficiency in patients with dementia of the Alzheimer's type. Gold, M., Chen, M.F., Johnson, K. Arch. Neurol. (1995) [Pubmed]
  29. Effect of age of onset of temporal lobe epilepsy on the severity and the nature of preoperative memory deficits. Lespinet, V., Bresson, C., N'Kaoua, B., Rougier, A., Claverie, B. Neuropsychologia. (2002) [Pubmed]
  30. Injection of okadaic acid into the meynert nucleus basalis of rat brain induces decreased acetylcholine level and spatial memory deficit. Tian, Q., Lin, Z.Q., Wang, X.C., Chen, J., Wang, Q., Gong, C.X., Wang, J.Z. Neuroscience (2004) [Pubmed]
  31. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Ohno, M., Sametsky, E.A., Younkin, L.H., Oakley, H., Younkin, S.G., Citron, M., Vassar, R., Disterhoft, J.F. Neuron (2004) [Pubmed]
  32. Identification of loci determining susceptibility to the lethal effects of amyloid precursor protein transgene overexpression. Krezowski, J., Knudson, D., Ebeling, C., Pitstick, R., Giri, R.K., Schenk, D., Westaway, D., Younkin, L., Younkin, S.G., Ashe, K.H., Carlson, G.A. Hum. Mol. Genet. (2004) [Pubmed]
  33. Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. Sadowski, M., Pankiewicz, J., Scholtzova, H., Ji, Y., Quartermain, D., Jensen, C.H., Duff, K., Nixon, R.A., Gruen, R.J., Wisniewski, T. J. Neuropathol. Exp. Neurol. (2004) [Pubmed]
  34. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Bertrand, D., Elmslie, F., Hughes, E., Trounce, J., Sander, T., Bertrand, S., Steinlein, O.K. Neurobiol. Dis. (2005) [Pubmed]
  35. Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1. Ohno, M., Chang, L., Tseng, W., Oakley, H., Citron, M., Klein, W.L., Vassar, R., Disterhoft, J.F. Eur. J. Neurosci. (2006) [Pubmed]
  36. Verbal working memory components can be selectively influenced by transcranial magnetic stimulation in patients with left temporal lobe epilepsy. Düzel, E., Hufnagel, A., Helmstaedter, C., Elger, C. Neuropsychologia. (1996) [Pubmed]
  37. Potentiation by DSP-4 of EEG slowing and memory impairment in basal forebrain-lesioned rats. Abe, K., Horiuchi, M., Yoshimura, K. Eur. J. Pharmacol. (1997) [Pubmed]
  38. Treating learning impairments improves memory performance in multiple sclerosis: a randomized clinical trial. Chiaravalloti, N.D., DeLuca, J., Moore, N.B., Ricker, J.H. Mult. Scler. (2005) [Pubmed]
  39. Differential effects of physostigmine and pilocarpine on the spatial memory deficits produced by two septo-hippocampal deafferentations in rats. Matsuoka, N., Maeda, N., Ohkubo, Y., Yamaguchi, I. Brain Res. (1991) [Pubmed]
  40. Transgenic and knockout databases: behavioral profiles of mouse mutants. Anagnostopoulos, A.V., Mobraaten, L.E., Sharp, J.J., Davisson, M.T. Physiol. Behav. (2001) [Pubmed]
 
WikiGenes - Universities