The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Increased lungkine and chitinase levels in allergic airway inflammation: a proteomics approach.

Asthma is a chronic inflammatory disease characterized by pulmonary eosinophilia and airway hyperresponsiveness. Mechanisms underlying the pathogenesis of asthma are still not fully understood. The present study investigated alterations in global protein expression in bronchoalveolar lavage fluid in allergic airway inflammation using a proteomics approach. BALB/c mice sensitized and challenged with ovalbumin developed airway eosinophilia, mucus hypersecretion, elevation of immunoglobulin E, and airway hyperresponsiveness. Lavage fluid proteins from normal and asthmatic mice were resolved by two-dimensional gel electrophoresis, and identified by peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A total of 28 protein spots were significantly altered. Several of these proteins were undetectable or at very low levels in normal mice but were significantly increased in airway inflammation. These include lungkine, a recently described chemokine, a family of chitinases including Ym1, Ym2, and acidic mammalian chitinase, gob-5, a protein that mediates mucus secretion, and surfactant protein-D, a C-type lectin capable of modulating inflammatory responses. Overall, proteomics is a powerful tool in unraveling protein expression changes in allergic airway inflammation. The proteins identified in this study may be associated with the pathogenesis of allergic airway inflammation and may also be found useful as surrogate biomarkers for asthma.[1]

References

  1. Increased lungkine and chitinase levels in allergic airway inflammation: a proteomics approach. Zhao, J., Zhu, H., Wong, C.H., Leung, K.Y., Wong, W.S. Proteomics (2005) [Pubmed]
 
WikiGenes - Universities