The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS).

Mammalian neurofilaments (NFs) are modified by post-translational modifications that are thought to regulate NF assembly and organization. Whereas phosphorylation has been intensely studied, the role of another common modification, the attachment of O-linked N-acetylglucosamine (GlcNAc) to individual serine and threonine residues, is hardly understood. We generated a novel monoclonal antibody that specifically recognizes an O-glycosylated epitope in the tail domain of NF-M and allows determination of the glycosylation state at this residue. The antibody displays strong species preference for human NF-M, shows some reactivity with rat but not with mouse or bovine NF-M. By immunohistochemistry and Western blot analysis of biopsy-derived human temporal lobe tissue we show that immunoreactivity is highly enriched in axons parallel to hyperphosphorylated NFs. Treatment of cultured neurons with the GlcNAcase inhibitor PUGNAc causes a 40% increase in immunoreactivity within 1 h, which is completely reversible and parallels the total increase in cellular O-GlcNAc modification. Treatment with the mitogen-activated protein kinase kinase inhibitor PD-98059 leads to a similar increase in immunoreactivity. In spinal cord tissue of a transgenic rat model for amyotrophic lateral sclerosis, immunoreactivity is strongly decreased compared with wild-type animals while phosphorylation is increased. The data suggest that hyperphosphorylation and tail domain O-glycosylation of NFs are synchronously regulated in axons of human neurons in situ and that O-glycosylation of NF-M is highly dynamic and closely interweaved with phosphorylation cascades and may have a pathophysiological role.[1]

References

 
WikiGenes - Universities