The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission.

Cell signaling entails a host of post-translational modifications of effector-proteins. These modifications control signal transmission by regulating the activity, localization or half-life of the effector-protein. Prominent oxidative modifications induced by cell-signaling reactive oxygen species (ROS) are cysteinyl modifications such as S-nitrosylation, sulfenic acid and disulfide formation. Disulfides protect protein sulfhydryls against oxidative destruction and simultaneously influence cell signaling by engaging redox-regulatory sulfhydryls in effector-proteins. The types of disulfides implicated in signaling span (1) protein S-glutathionylation, e.g. as a novel mode of Ras activation through S-glutathionylation at Cys-118 in response to a hydrogen-peroxide burst, (2) intra-protein disulfides, e.g. in the regulation of the stability of the protein phosphatase Cdc25C by hydrogen-peroxide, (3) inter-protein disulfides, e.g. in the hydrogen peroxide-mediated inactivation of receptor protein-tyrosine phosphatase alpha (RPTPalpha) by dimerization and (4) protein S-cysteaminylation by cystamine. Cystamine is a byproduct of pantetheinase-catalyzed pantothenic acid recycling from pantetheine for biosynthesis of Coenzyme A (CoA), a ubiquitous and metabolically indispensable cofactor. Cystamine inactivates protein kinase C-epsilon (PKCepsilon), gamma-glutamylcysteine synthetase and tissue transglutaminase by S-cysteaminylation-triggered mechanisms. The importance of protein S-cysteaminylation in signal transmission in vivo is evident from the ability of cystamine administration to rescue the intestinal inflammatory-response deficit of pantetheinase knockout mice. These mice lack the predominant epithelial pantetheinase isoform and have sharply reduced levels of cystamine/cysteamine in epithelial tissues. In addition, intraperitoneal administration of cystamine significantly delays neurodegenerative pathogenesis in a Huntington's disease mouse model. Thus, cystamine may serve as a prototype for the development of novel therapeutics that target effector-proteins regulated by S-cysteaminylation.[1]

References

 
WikiGenes - Universities