The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Secondary metabolic effects in complex I deficiency.

The objective of this study was to investigate clinical, biochemical, and genetic features in 7 probands (a total of 11 patients) with nicotine-amide adenine dinucleotide (NADH) dehydrogenase (complex I) deficiency. We screened the mitochondrial DNA for mutations and found pathogenic mutations in complex I genes (mitochondrial NADH dehydrogenase subunit (MTND) genes) in three probands. The 10191T>C mutation in MTND3 and the 14487T>C mutation in MTND6 were present in two probands with Leigh's-like and Leigh's syndrome, respectively. Four siblings with a syndrome consisting of encephalomyopathy with hearing impairment, optic nerve atrophy, and cardiac involvement had the 11778G>A mutation in MTND4, previously associated with Leber hereditary optic neuropathy. These findings demonstrate that mutations in MTND genes are relatively frequent in patients with complex I deficiency. Biochemical measurements of respiratory chain function in muscle mitochondria showed that all patients had a moderate decrease of the mitochondrial adenosine triphosphate production rate. Interestingly, the complex I deficiency caused secondary metabolic alterations with decreased oxaloacetate-induced inhibition of succinate dehydrogenase (complex II) and excretion of Krebs cycle intermediates in the urine. Our results thus suggest that altered regulation of metabolism may play an important role in the pathogenesis of complex I deficiency.[1]


  1. Secondary metabolic effects in complex I deficiency. Esteitie, N., Hinttala, R., Wibom, R., Nilsson, H., Hance, N., Naess, K., Teär-Fahnehjelm, K., von Döbeln, U., Majamaa, K., Larsson, N.G. Ann. Neurol. (2005) [Pubmed]
WikiGenes - Universities